Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.12-cp310-cp310-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.12-cp310-cp310-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

accera_gpu-1.2.12-cp39-cp39-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.12-cp39-cp39-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

accera_gpu-1.2.12-cp38-cp38-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.12-cp38-cp38-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.12-cp37-cp37m-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.12-cp37-cp37m-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ef78becc0a0eec93d1497c90b06b1b46cdd2dd95787c33ef50367eb0afaf7ad7
MD5 f539c5640a8b87f2e316ba2e24df1aef
BLAKE2b-256 3db9d5f8eb0db64b79ec498b15f073ae860d49cee87bd20baaa612b93ab534e0

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fb8b6ea67ab815df4265b6acbf67f6c041d8eca556271198ed862acc2e85b7c
MD5 7ff3a4993304bab7141f542b5ce5c3df
BLAKE2b-256 449916b2860ca37b9a3ddbb7b9a4fda2a3d5d4de4c2ff87d1584fef49f878579

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 387afb7c4649f76e159a0dacadc23eac67e1c9b90ad09396f92218daab29f8ab
MD5 09bfe3f4ab4064c282b62293c36470c8
BLAKE2b-256 e7bbf84917db221a7ce38aa43f1e61cf668979d8b90002312f0a21eb8fe189bf

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2c8ac34693c30415b391e5c873314c0607b86bc8028383421343f3437d2095d9
MD5 6585ed0eae5fcb35a8ab6e9ee9367dfa
BLAKE2b-256 a72752119a547e63c8e67a3cd32820f29d376ce6e035c74a83f9c06d46fbca9a

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c6667cd8519b83bb8f3a5c6c702483d8d4ea587324715b041cdb17cf87ee29b
MD5 b63b92a7c0b030a929def3a739f856fb
BLAKE2b-256 103193d9309f752bc3632aac5349519a66cf9ac9a236c4b788a8e9b27eb2f846

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 507e12a658f3f8df8091d51ff2ab7b24659374e32ff05bbc7fc028ad2b75d1e8
MD5 37bb7f4e37cd992bf1edd684848f50d9
BLAKE2b-256 971210b6fbea3afa2619e0c263c89f736e090ad249ba154f590171a716206bf4

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ebf4453463c6ac76f54041d189754d8f44ad384883192c2e7a5e9a0b4d2d47b1
MD5 f758a9a767debfc9f3b9386f8d1336f6
BLAKE2b-256 8d1b0edec013b53016180f745d02ac72f763c805d8a9a77895267a2d1ceb862a

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 888e7434d88a9528cde4bede6672bd3e8e4d0ed4d1e52f21fa4fbc15c4618baa
MD5 f008f9b1a0a4f65b9ff1730bfde23bce
BLAKE2b-256 77a20bda609a44631479a07669d996fac4bbc3bf3eaf9f46eae46df9d43827e6

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b2579635574411a7e9fb4b5acbc929db7b6af4495cf290d5f8cfba36433a4a15
MD5 9df1905dc27819b28c9a36a665691985
BLAKE2b-256 ed5374e8e515ad9520754bb95bb8a86c765c24e2fab86f854d55c12e21cb3f68

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f75793f8f69faa7d68e52e3bd361d87312f9c0e136af84a7032c935be52bc532
MD5 509a7bd8eda14c3146f65f7d277b5410
BLAKE2b-256 6367afbdbfaaf616f7660febb5b0c00f36b8f0c75418c13d8d609974f6a7b300

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7f240bfe1091b2b5f23efa16240e2a81766dd190296860f97be89a1d82a67f0
MD5 82adef9ceccce0e85a971cd473a55493
BLAKE2b-256 85f79ac3f23c71165c09c9897b4a7d0c91a0a76489f662e198459184d5dadd56

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.12-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.12-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 859535f064b8ec37cb88606fd9f53393d359a498da51be4227b01d28d02eeac8
MD5 c9f07049fb16ed8d8b5eed8853b80b2c
BLAKE2b-256 9cace783af017e5600ef54a775931b765494ee040d4e3c1535fa03061eba70b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page