Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.14-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.14-cp310-cp310-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

accera_gpu-1.2.14-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.14-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.14-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.14-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.14-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.14-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6b9c70196d65218e513d411217184905c818c9e44caf12a7f48945f53ffe6730
MD5 3fab44040948bac2e3daf464b2931d2b
BLAKE2b-256 46255bb025f14ac9d9c89d4b87fbfe5431cb73582bfda209692d3f3e8f3a8a29

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50d43eaf64e14a74430043d4b1efdb28ed1a85032625b0fa5fced7b0a53e57bd
MD5 8c993c02c69bae87db0fff5eefd083bb
BLAKE2b-256 95efe2b9cb0947917c59b552037a41db0f53a567e50f3f6afb5289df8024333d

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9d1960485419d554f94ebdc9149d3f8b89a9bedbac1f5791d452a1d1a3b7da5b
MD5 53c20bbaa25174f14974c4e456a123d4
BLAKE2b-256 d087930f81d7f2f534aed3d4b5bcf257ef9737ab628683dae6bf86bdee48c036

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c09764e8c152b9557ef387b25448f8cbc97a83562b82a945f12edd333379d64f
MD5 18227bea2727558a8212fb9e40c00bcd
BLAKE2b-256 60199d0a77586531df7f331a35b621bc12faaa1c0af6608350869e4d2fb99fb5

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 818a7afcd3e702ffe69bc4ebd805274b713e236137ace2cf0928bc9ec6bfc988
MD5 136ba755d9cd3465c8241bc8a4c59cb3
BLAKE2b-256 c540c58df701ab7ae89508071571ff1357a9d9f22e3efa1e5dc2a4a270a786d7

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 e431d9b0935552d62b8a5a5dd826477d0727f95739d1d515e5eab095138de2dc
MD5 d584aff83225cb66303319f3910cfb4b
BLAKE2b-256 049ec7d312e5c33883aaa16455b22a252bb6663ae0b8d333b1226290c0725b32

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1c8b608674593975f8be09dea0fb53789d1f16813a3aeaae4501b16a58ec1940
MD5 9c6ef5029fd396d9f4b26e9004236920
BLAKE2b-256 5dbbcb2677a8d2734c14de861800e94bad735be13f65aa14b51aaf2dc51ce165

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3412add153059a54015707d450860f2f745bd8561de4ae945e915ba35344bb9e
MD5 86d97ec88f10542791351957ad7c9b33
BLAKE2b-256 20b3d0d5202858a5e18bed6521d7e9e797089ac5b3cd60c5fef8d9bf6ca96763

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 496d8b86bfe9e00b2fad7b812c5ba4bf68e7ac3a210f56d611f3dcabfb70f6bf
MD5 9cd934aa2fa327c3dc5ec8de627f0a52
BLAKE2b-256 d38bf7f6a55d70a5751368c510c9f70d1afde9bf9d94a249f401eabe956dcd48

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f49ed7b1e95749674127bf530b7f8379c66f74e765063e4b31320b090ec05892
MD5 4d90639000f16c5679f7c7d3fee90d46
BLAKE2b-256 c58f1fea466d28d2d703ad5e0ab9702914711005bedb4d609957d1b2211193dd

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83c404c0325c918be39168d688e1b646e92daf6ffa959338482d3601f7225754
MD5 7646095a395c5a4c545d09551fab75f3
BLAKE2b-256 7dc056bbe08e35bda21784f11caaa8bd86310bbfaa31e5f70a7f43aa44122efb

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.14-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.14-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1f90454b91269eb89ba7c31baee20f5549db81514f0eed17a40f60bb0cbebe32
MD5 885984f4ed984b3f785c9aec2b9da493
BLAKE2b-256 f9608698dc4dec7ea9e2cc74ea8a0c84489f47b4640fc14b7dc600f3cb7367c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page