Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.15-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.15-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.15-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.15-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.15-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.15-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.15-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.15-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 75f137804f6d1a613e40048e1b45f52208f1bb3cbe2dc2cc7f03b01602a9ba68
MD5 9d40b2060bb8eb099c9c32148df40948
BLAKE2b-256 7f933ec348b7b4e7fc723e6f47b5aeaed3b52215c78ba7e1a7883a59d018fdbd

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49a3b2220b01d3cde61d3678c5fc38dd3e0684166c51e0c4b3c12821a70d343b
MD5 211e43225fc077275fd84a8769c6610e
BLAKE2b-256 ea44871308535cdcb00971504c66a1b7d6807097eb4a252b0af7f08a62274ef4

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 d71cb79d9eb6111059332079362598c8d891b4bf5d145aa371de91d1e7fa38c5
MD5 9f9a2f9e670bff6c86256bab5afc3a0a
BLAKE2b-256 b7275140de2d6e981f0a0063bd29e4b1d655cb72e6ea2673d3c70c08ef6168af

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c2deea3a40aac6c83577e17d818c9adc334f6c1f540ef215d36eeb0a40bf2bb
MD5 aa0424aef3802f8a42910943dc43b3fb
BLAKE2b-256 0f149506b1098acdd454abc26655c9d899496db071ac7f31ce0e177b86d5d0c8

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe924518f843265c6e4362ef5a1b213f1bcb8f2343b8b45a09f76f052aa8e4b2
MD5 1151e95aca76af78153954e03c8707f0
BLAKE2b-256 48dbbd705b49e27b2b982cac800a0d07a4f48fcea05b49c33b762e6a6f47c971

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8378da79b40ded4dddd93fe2ff0ee0718f12b7750ab980de46b19299b3d600b3
MD5 bb2216858c81e749f39841dfbd2e7bad
BLAKE2b-256 84fd0a65769d840487d6d21b4110d6ed45880c913100b0fd73f4fd9d788a0f97

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 353834862c8f24bfb49252616991bac8b9b62d908356504d44107b290c80fb99
MD5 3d45b20907e5fa51baae0f5dec0d3fbc
BLAKE2b-256 64cd9bb74caaf2a96a0b8540d9d630dd8f1651036875f6555075f936ddcf85c8

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed3c9191c94f9359674496f7df90f82fad3103be1bd51ca78e2fcc2cc95baccb
MD5 3ebcd84e7366e3fd6b177fba55461b24
BLAKE2b-256 98d78f979d3e9d2aeba5db07642f3ea211022e0e5ce017d028a5f03d238c99c1

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5366d4432573dcc873353852d6ff1b474ed49ed4b20383efc6add1bb515b427b
MD5 c7b899cd0049a23ce2837c61aa1ea4aa
BLAKE2b-256 20f32caa71df3daa83ff9ab367147a2c8a074998ced280e775495167441a4cd0

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 64a592f3a0d3266c235ae04fc3cf75331db3517db103d93d333d924c77c90b63
MD5 285612430034eb4ddcd0a253b3b9cb28
BLAKE2b-256 447cff3542802eb6a1ce151b34708f73730fb9710e099921eca8df28f6ab89e4

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dac8ed07e45613a9ae13376c430d42a1755b4c136dbbcf16efc78be551f393c3
MD5 e2180f9cab84594b69d03cd42fdff351
BLAKE2b-256 2a148c382b2ea8a1f5fd2ee5a12e3277140db9a2e81149b3519df6867d9b9831

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.15-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.15-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 856d0ebec62b6d2cb0db233d6ae08a6d79833b85ef0db594b5b180f6f24ab11f
MD5 2c505c8c64c5f2e77083cbf0d68052e4
BLAKE2b-256 8f1ad159e6409bf3875ff65266958d83ded1effbb95f74b45b904339871712f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page