Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.16-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.16-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.16-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.16-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.16-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.16-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.16-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.16-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fa53cef8576ec16f5ef02936e8c035452af4e02e92e01dd98b0cc8e2690fe0eb
MD5 8c05e480777e0792b7442be01f4e7924
BLAKE2b-256 de5380b3e028a7cc034a0f1e955263b77c1c7647b4ea4897208dcfdbf3ee3b58

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3baa356750ade17394d049fc9ac55a42da4700d9b96eb5681d26c883d5aea3b
MD5 a293c03f23bbbd9fe318ef838fdb983a
BLAKE2b-256 5b41823ca9f3468a0d2d283d7d070e65c5b4726c1907c3df51a9085871c8e9ed

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5bb481021200a8ebf55554f35a593e9d5096eca9f8e5f2b768392fc53983b0e9
MD5 89c3ca42c8f64f577b94f501a1e713ad
BLAKE2b-256 30c844459a7f8fad3a0e1a991caec273a9ffea2243a100434ad01458b32607ca

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bff083b7e6c5715f686735b54da6ffb004bb31800997e693f529dab2bdecba46
MD5 6687da00cb862d95ee78ee95a9fc4969
BLAKE2b-256 53978e5df472e5faf82921e97f9a50d373b2fd315c5d6bcf8586d12eb9a50a36

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d74643bbe9b0b2108970595343e5859683eef0068b3a44fb68bc8952e6b6f0d0
MD5 f96d38b40e91222a60026bc18eced124
BLAKE2b-256 10a6cc0ad50b2acc5924c952ee5672b8ac291820fd0435a7323dfc4031331ea3

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 d3b57ce51bfdecea6797f416151bd2f776949456dafdba58e41a24bf97686a5c
MD5 3ef9c352c8176aa3e7070b85cf305f7c
BLAKE2b-256 e59eb8f2589e87c2e435b6cf036a46bba938e949f069e344e408b1cc3a1ab272

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 470119505e93a1f180501c312d55544b5c3c1186db64c34f2d1dce4e9d5f1a3d
MD5 8f33d4fbc6d924c2b66c2324c820949e
BLAKE2b-256 2479a07b39564a9d48847659108ac99e97898fcfdb71bddbfa72c5733d7581ff

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe49e0313141cc503634cea7bb61ee37352610c3a0e922b62c9fa1a67a5a66d2
MD5 fa9eeef2f162fdcd92f62a0176780910
BLAKE2b-256 3c5a36210d42f641a5061e05ebc3b7f789bc85f33cdf966d429afc28761cdabf

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ecacd741f20c24a4875c7113e5f59f843132a366bd1ec339bbc1bf21162fac3e
MD5 fbb2cbc1dbda30d68c842c7120c9eab5
BLAKE2b-256 9310956b5d748c2dab9404edd6b1e5dd7a79b215f734ccdc5dd8009d342b6f12

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 889457626955825ad65538ab21491d46825b191a2303760c0501750ca9b8b7d1
MD5 677262abace475fbdae287ad981c7100
BLAKE2b-256 4928a9d369e13cb8531ddfd0b657578200690e7ff67a4e6ff602d51dde3c7a55

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8454882aee9d0493e4190914ef5f8a6bbf8ee0a5058283e81dbe3f0ee0365ace
MD5 a47beac2ea05d79ae6800a11ed9a33fa
BLAKE2b-256 b2e5f164d499773241e1c3176ed5e52f2ddd7d0d797560ebc0c9a8a4a30025af

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.16-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.16-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5c2a854d7d1e53fcb332863bc1122b4b09bb0f6718109b0acb15f37993db6bab
MD5 6fd0c00cf46952c7d770ba99b940acf3
BLAKE2b-256 05b727b613df79c126052e5bcb3ed2a3e1dcf64c1fda71c869d50f55e3435349

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page