Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.17-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.17-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.17-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.17-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.17-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.17-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.17-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.17-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.17-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.17-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5973d39a37aec49164d2ebdd6824952d73afae0bfc05e4f81ba492fac69d089e
MD5 0b1879780dcb7b7164f2dd425c3dbc23
BLAKE2b-256 060adcab915dd6f5558c86550f0d7c35c70cd358146fd319939524960c1d0d12

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47aec308a4b33537d68036d1e857c65de495fd34abad2b00c555614b7e569ee3
MD5 4fc2294732079c1d2ce29426b611194c
BLAKE2b-256 3aa0b3d0067b26eeb3fa631d260565682de48e109ffb88e1c521bbfc268ca6c9

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 665ac2696e5b387564033edc3e20b08e52d28b24143ab250b1d7acaa33959142
MD5 6dcfe61761ca9c69b39ed5e149519400
BLAKE2b-256 61c902732739a0ca62bcec6fe1d84f7ff49aff30acea4f98d8135be67149dc69

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b1027410cedaec99cfefc2e906b7d8758fbe9bffac45ffd5e1d3906d937ba8d2
MD5 e0a692fda5078ee6f41364a2fe4e77d5
BLAKE2b-256 82b040bc1160132d8b5500ad558b39864eccfafeb07f581b642b6ba738e16d58

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27668c4472665e3bf40d3b0d3f105b2d230a3f7c57f85ee18c3f823bb2fb4e9c
MD5 9960f49b0ffd7c1215f168f57f53d900
BLAKE2b-256 f29c45e946d99e2f24315b16b7813cbc4c116aef1928117f15968abac9e0e9ea

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 9f6c38a8031aea1a2b5115667e4ad251f397805e5cbc1490ae9eaae0d2533ba3
MD5 e405e890219f6274abcb2237a6379e39
BLAKE2b-256 9d9603d0e70604539522f16d84b62b874057547e8a37089d450a96ba7aa005eb

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e86c24e4f7ec2833ef34af8aa65e0447259295a5540c2efafb9126d034127bbe
MD5 a0f5e47594f1418bc32eabc90868c137
BLAKE2b-256 f891232fd786f44dd74381c1522f1fce317f4562b90cf24add7ce21d5e62c8e5

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0824c2eb3028040cf53b9f7dd4f851fc153eda899f163bd393d11eb423b1e9f
MD5 103862f9df47da43bfac301812860238
BLAKE2b-256 87d044f88c59c68fe0adbafdef5a8b07c9c1c51c5545619d9fcd787139040b1c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 99f64d401ab06294fe985cee33cc0887e9445787eb296b5e4e4e04c47d3a7f21
MD5 c57d33593db7a32032c9adc67efe2b40
BLAKE2b-256 a1786a1cd4a4e559d25438474bda786eee87fe54be7b06f13f6e2b8942c25b64

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ce0c22ba5ebac68ffd9801a91bbe2dda839a71f2db313937861c811436b23dce
MD5 ce108735b5898ecdf610ff636ef5806e
BLAKE2b-256 e1e54c9133f87eb1a2adb39f11d2d90840d505af966130e613a4eb9343bd0b45

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea7659e33f4e727d09c3e684ffb404956c5454296423bd21368b0bbb608275fd
MD5 987d2b8dd2e0458ad4b8cbf552fc9487
BLAKE2b-256 0fc2064b678829c586705639c07dac3c6e981153c412822603a5ca91df49a8c9

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.17-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.17-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8a63ea97c6658f3f4a54ad6018ceb55f99ba6563bdeb5c3bda8ae54c2fb3e409
MD5 d3a5283f1da30d1ae9b7d579b695b098
BLAKE2b-256 a2e832d9f54c7f700f2e1c1c7990b5c5ce289ef4639f29b310ef674050ca9670

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page