Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.18-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.18-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.18-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.18-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.18-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.18-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.18-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.18-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.18-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 baf9e1973739ba96a39ac399f7575bbe8ca62ed8e9b1e37530626219c3d2bb7d
MD5 3612a1b203c45e2c7f2d73b1af3805b4
BLAKE2b-256 d3b1669545bbbb7ac493a05dab3705dd826b3c610b872a991308a27a8c655f6f

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 429cd9018a87cc86c02530f6179989f79aadb3f8411a406124dd57390a5e97d0
MD5 a8f7038dcaefab938140b1382273b9d2
BLAKE2b-256 3f2acde62f14616a573f05ee865d0ec8848310597ab4deb5e1b2b1b540e69f2b

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 4416bac6fb4534e58e7f8c3d63e222940a3dd038b38a0b487f7c43783ae83a29
MD5 e850703ba8f0730d21340b8b443246c0
BLAKE2b-256 83a5fcd5cc28638ef272217779d500d6ea19820896705329896864cd7f9e69ff

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 764a4aedecc213f0e9e4ff9d10c819d6140d18593fe13890e479eeb827ff12e5
MD5 249a1594017192c88886b3a26e70e44d
BLAKE2b-256 712576d74edf892253e52ffb04024718390b35b869304220596343ec5db5aa93

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9ea816131999053bb83327992bc84b316441371fd879c38b8e8fef979683661
MD5 2b79c66a5fa4de42f836702fad3f31b0
BLAKE2b-256 1b53a65fc03e8c33dd5277168623c3909054f74b08d7a2c7a01d016750e29e1c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 da6f73d7f60e152202a412493490d01ddb1a1de3dfccedfaca8970d88ff6a630
MD5 e172a06fc4b83a4c7ade4e0bd0935171
BLAKE2b-256 acb53afb46298ecc7bc12dc179cd9945e687ecdbdb4cc4adf5ac1c3f378c06e3

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b444c03bb8dffe9a84755fbdbf6510955c67dc2df99f5cfb8b3d52d907005d69
MD5 bcfe15687a6de4b0b80b5a7604b3e1f0
BLAKE2b-256 d52576ceaf1e8d0beb6bbe24016570829b5f8f85d6b0396a6a707e1354b17936

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a24f2a70dd6a13bb062f1218ef06ac2a52ddc9c52116b2ab507143a703a74158
MD5 0f26bc65f1d33fe7d669505e324d53c6
BLAKE2b-256 e65e2f86e80f74415c0de9c1de4f9e3ddc3728d951fefb15fefb95113b3772ce

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ff783cd40e116d38ff3aba2ca797c60a707cee12c1c3cf6ce32ae03b034a77a3
MD5 9ba6d6239e039c2515a594aa17d14ab0
BLAKE2b-256 4790510b06a32c27e988002860bf4d9ca0798f73148a9df685e6613eef40e3db

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b6999c3191227a847f75b32195e4a6e5a5f47c8a51516bbd3df2fc6aa3f69e73
MD5 eebc3c60d95417e1070533344071937a
BLAKE2b-256 01e4fe99345768816edd7b092eab69da678474542383da8ef80c6b865855c52e

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce38d8d62201b78eeaf5d835936ef689cca8820db03a043b58287bc0d99f4138
MD5 351046ee4efc0b94ca81df527d1080cb
BLAKE2b-256 3882c39d68ba78cf6c751433643114fd71e6b71862878c05dfae5e520965c225

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.18-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.18-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 08046a633043e43fa0ed8d63fe6a5e232063c302145af5b2e43e2d815d5feda0
MD5 9507a26331f469533f50a96f0a9cba8f
BLAKE2b-256 c4d997f860851aa8d31307d2e9c71368f9f73cdb253ef449954c19ff0f54a8f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page