Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.19-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.19-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.19-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.19-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.19-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.19-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.19-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.19-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.19-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.19-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 297302c1e03fd81f60733e40fcefa797e950697d81024bee7356c16a1264c8b4
MD5 b4d0704749032707797760106567cce5
BLAKE2b-256 64cc52824877323f555d6685b70a1b65248f34fb8fd6082618e9fa63ca79a37d

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a52ea98d394c34b2816a43dfcdb617ec7f55c640d7cfa0056633cd7f4e47fd43
MD5 3d54b766c5993db7f315bc8976877035
BLAKE2b-256 37d43d0a1a90bfbc7fc9d55d01a50076d52eab3585a01ac33f9a9be2be069ec4

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b459b066fcc1546c8e4a4dcc1e115dfc6e720a4e074a308655baca505fe5f60f
MD5 c574d35f4ccc62e8fc032f3f7a0a9491
BLAKE2b-256 66d493df45f8213ff1c34c5f18287d85ccf1b48475875d3c6d0d486a6a17f791

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bb9e8b1d4e83dd0ae051917e82126aae51a0e2443f649877b7c6af5808431ab3
MD5 7743c710018012437bf70923d63d7d63
BLAKE2b-256 efde99f7fea22bc09bd26ed1d30f2ac8bd440b287562185949107ff8a135381c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70f89c59d7df38084811a3a7b22c3d95c98621a734f44d9caa3574377e5fa802
MD5 6c846766d4fd011d213a0f817bb2e1ac
BLAKE2b-256 079ebe790e46c23791df28fa40048845a766bc8e3f60e2316373606d44b79e31

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 cb3215ca299b7b4fdeeb396ea02e27f0632fc40fa60b700d492eca0c3052a5fc
MD5 f4186aaa14667d9c95d27bf761d9aedc
BLAKE2b-256 2a8ed03e5c2fe163f5ec4cab1dcfe39dcd77c1258759ca35b448641a50a1e266

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 237085439263c39b8db6fc2edbf86e99bbde572fc22c0fc4a3e8f8659f7bd74d
MD5 faa24b6c43946d2f06eb29b45887c0c8
BLAKE2b-256 46124d48530602e6aeffc175c2e878bc22a9d800eb04d19734a562ba9ec4b0ef

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bc4d0475c8875deb445493ad59c6a46983d9bfdc59e0198161b45943d94e174
MD5 9ab5fff46c1963bace4663405c37abe2
BLAKE2b-256 0b4b580c2b2f79159abf1b161670b1409bc73c6efac5ce773d38c16aca2e2786

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1e58a40040deac77755ee29ee806661e2482e719ae4d625a58b834927eba84fe
MD5 72ee635b3f1efa2b3174af9ed46dab74
BLAKE2b-256 f03df595014ac5d9b23f7002fcd825c43bd31ca9c4be17d977fad3c34343fa31

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 59456d4f1cc833dbea2b290e97307ae13f22f14656ff80129fffc79053257190
MD5 dda905993c305293b859f3c8026cf8c4
BLAKE2b-256 f3c88dd49e9d5d445b445693e6455015fade43fbd2e1f81937f0c30ce1f7e8a9

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f69cec145fa7c1122bf973c4bd0b523d6bce9ef8906b472ccc753653fccaeb3
MD5 daa8a9a2a88079053b4f2e20df424407
BLAKE2b-256 d5b7610f81a95c6a19c8938bf82fa6a12c03c1127e6e0107f7b51d0a8b106c86

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.19-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.19-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 23d4d637bfbf2d2271d58fb594cfd1418d8922c492ff9c7a66bfdcca50e8a7bd
MD5 ec9f19bef924ba023dac944c4e9f9c6c
BLAKE2b-256 73d9f503fd39a6e46421d656dd0d1432d022dfa1fe884dbb7bb7737195255cac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page