Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.20-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.20-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.20-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.20-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.20-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.20-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.20-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.20-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.20-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.20-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.20-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 61f9e8dd9890537ec421e2d851d4dd549f57a350e5b0179c6f579694b7928c4c
MD5 acb594f60fe0a3925bed2035c6bfb57b
BLAKE2b-256 a3cff1bb0ee554e61078bf1542a412a9cd4d2627b9ab5c7be898844d3864ac87

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9d4b7c7b2e9135389c908b365d6f714d7a149bb54d7455ae7fa2a91da01162f
MD5 372f57dcc0a2e15a943da9ec1b32cf54
BLAKE2b-256 d20a4e47b38d7ab57b0c74285e64f8d7cb854757832d4957bc3bcc6149ec2dca

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 9bae69838c3f653ff448a558cf98b587db5f58b6ebfffca63b1d72215f3f970a
MD5 e01b1e269f4bd2f15d365a7e1e0bd870
BLAKE2b-256 f4d8cba25c30697e6ce7daffc0448ea14f22e9d964c9c8fe3b88cd3e5fb14e99

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c2b4121ddb8f76300f0525d5b8f68964dc8e0c8be56a658775f24697200c51a
MD5 6938659db5d07cf60a95009a126229de
BLAKE2b-256 a4f4757d41aa9e850b51f37e62ace4e2f686d74bfc897f1e8a25fe610a16c8b7

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2f49c618f16f0d531bb33eeb9e1f01e0a24eef68f07ea1ed7f30013ca7a7938
MD5 11af0acb1112f46e8391d83fb2088ba0
BLAKE2b-256 b810dac617211d97a58b79add605f0c1ee0e94a8809645e5105cb43a7a3e08b9

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 3e29448445bf9a3fdb3e22b07ea940372db02d038f342356027bd694ea56d7a5
MD5 fa6e3c3702b6db3d8deeeeaf989f7539
BLAKE2b-256 5f38005b341a59f4ba7643799b8f54d5639cc19914c2abe2d63e36aa44555b6e

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 24f43764369d70266b70a233fab9f557d74e39e3937a27363d13097ab98daad8
MD5 71544ba49e2e37d15e594cadedc4c735
BLAKE2b-256 dc377459f623ca164fa5417c15b6818a090c0f197956795dfbb8ae918e016f6f

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d39df5885a01f7cde79a90430928e66f0ddfbd2648fdda999902d2734c2d1e26
MD5 911c024422c22fd86c9ae0f584c0b3b2
BLAKE2b-256 9f4d62ba0d7bc86051604fa172a4d498e1a04f7b456843385e78c4a37785b5e3

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c4c5cfd45944383861fa41f026c8a2550b2da392c19f132779406e37d648a78f
MD5 e5975ede0fba14b127c197ee7e69ed5e
BLAKE2b-256 8356891864e78f1ca6046a02bfa9377b27eead3797ccccc69c29415d71c6792a

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 614ddaadf19b1fcbb421fd6dd8d90916b05f593f2753dd3aa8496606f78511c3
MD5 18ea669907662a7f4c794235d2b063ca
BLAKE2b-256 98ef2184fee7d9b802eec14f9777cfc4395e215af20cccc6bc7106d857663928

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ff5288d53f431c8fcd2cab9d68a3616e08e8bea5538495a81a5f4978c95be6e
MD5 135cdbba19ef85cda94c3ed3d10c207f
BLAKE2b-256 ab08d40d026943f82b36c683f8526a7fd8ccf44e1f635b8d5df5a9f01f525d44

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.20-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.20-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 58246144c3e7720074d23dd4ed883902fb657b208c67088b47df4b8d9b8e30cc
MD5 499edc6316222027432afda4eca7c215
BLAKE2b-256 c70b2d553a17e2416d8b9ebe43c30bd3dca9261a9eafb32e4d72c0f1e8a36143

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page