Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.22-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.22-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.22-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.22-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.22-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.22-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.22-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.22-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.22-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4ae60742aacf74f5697fc3ccd5510dd5e75b01d09d8b4c81b0f409d629159e77
MD5 bd488786609489b61b602bd2e435ec48
BLAKE2b-256 a4d8bf91e3cdaa2e0bc61577702d7c51afc4f2c9bc97b4d80e04356c59f277fb

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6ed2eabd869134d934227cf071d88d4a7bd9e3bf1a7947d8090dc37576aa168
MD5 8f33f06fe6b263b8a702a52aa7278c7e
BLAKE2b-256 9b0759ca605809b3e5a86754c63abf97a991fffac72cca3831e01f4f0c3623e7

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1ed56eb39abed690d5141cb0e1c352c63e0f327ee9919df0c058945e9e1ccbfc
MD5 a5d1a903b3a6d3da80c3023cf1c8be24
BLAKE2b-256 273147812c2088b550f9cdf449bfd6de977a842cb16c8d962bb8805a35a9898c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ec0a59fb784f60e8c6a60eff0dd720664967a446e86fac9a4e35933c308a0bbf
MD5 581d7d72a154ac648d027b39f2a6ed40
BLAKE2b-256 5fa17412cd333bd61bf241c372581f63f1cf3379907146a5f350be129736001c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0d25bfcc91ef0bdd62a012d9bb000d84a8c10d2b150ef2a91a5658550e6aa97
MD5 a60fec16a84a0805a2ac620ece5f98b5
BLAKE2b-256 91850e95d20a7b328fe20f56f32c80fb2b73db558c90642ff1576914c21d7614

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 480193de74bbb1d6da09375cfa68b5fd1575fbbf6a582f0dc58c77c7ea70a57b
MD5 235f68ff985559e5b513c116780430b1
BLAKE2b-256 9a98a96aff1e596bdd8f2bcdec0b4726d8de033f4147aa52c6a5489e017b6889

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a6e5c33de9fc85c325d9e24de08f18ceab27c2b5ed73039ee0277162fab167c2
MD5 0e573c63d3a78e751060525b1475c1fb
BLAKE2b-256 05523a79fa97f9af20240cb6f8079ae2491eb8ae64b0c81e491ed0f01c3d8fc6

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 322a18d0a4ff9728a564d09e982053df11dcf3be9a353b8a7214f175c4d9b32f
MD5 6bd1121b5b503c735b7c415010a139e2
BLAKE2b-256 fbb66199c57306110d6c3e121470849a27948d563987cb1ae73253142368b3d5

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f9409d16ae05ae5a9258943254d80c659beb2410446516364750a01cede0d054
MD5 1c33f747990700b42bd58f3e540ffb0c
BLAKE2b-256 03fb23e663b68e191bde77f480c54a7938a3d553ffdbf0df724dec1a67657750

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 77e0ab56681d5a43524277a2a6d3025c3854121ca6aad3882468764d93ddc3a3
MD5 e811586c148535c338575b87657268ef
BLAKE2b-256 0e34cf2cc2ba0ba7e21a8d64c81a000cd75c612f0858abb9466b69c2c4a3da77

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 374ab0606021c2d46238f6c458afca443c24c25b1cd56e6bcc0fe400040c8056
MD5 6337410d568a4d9318db2afdd5ea56ca
BLAKE2b-256 aea7ca5bea7478fb60eee5fde14d571ac9b2a61dd043d4cacb1e2adf72dc1010

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.22-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.22-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 58b7e6a1f4f44b387c0eb29e95119b3f62c59684b8370e06f095167834a0bef8
MD5 32d84c2887cee957f80983fdde453b56
BLAKE2b-256 cb17bf3617b8f7642d929587f07cce2b620d137e125928cf885b8756f6e8d312

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page