Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.23-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.23-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.23-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.23-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.23-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.23-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.23-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.23-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.23-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 13aac861263b90d2773cd6e98e651afbb8525b176de2e2c1fb79a639115371b1
MD5 dc67d0b671d0b17af8d7d45b088ff76c
BLAKE2b-256 46ec989a4697b7234a3e4cfeb540379ee0188f92de368475559c9dd701b512d0

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9043c815ecc30f79e802ab599248d1a340e8cf7a400cc5f033285015a643d824
MD5 fbc837ecc5a234f9a638571fde57dac6
BLAKE2b-256 9ad1ebe0b1f55270acf8a995d2e81b30108ae652bdffe784fa54c066309d9244

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 40e30ba88d1f42c8a05f574f725d3ba4ea8d35ac393bc38bbb972ada3127d2fc
MD5 838bb5da829e4be44eb03ed1814a8086
BLAKE2b-256 1c0fbb6b41fdd5e07238ddac2eb5ca44e4d9c3bae95b54f7ff76459215ceb600

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4eccbc362abe135c590a842fc34431539b7055bcea4c7fabbc9a86ed1e87695b
MD5 1d787e7f90d6ce2edc5bff84186b0ba7
BLAKE2b-256 9365168e7280d89023cbbfe095faf36c4283be1b32d902401578f40eff771bf0

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 817fd883106a8ea2293a725fd03db7f7877449dade0cc3704fa1122a54fa62bc
MD5 85d0c62c67e61cdbdbfb39fb160c9a6e
BLAKE2b-256 b9e5732498237c3a6d84d274ba80cb9c1c639144b076587fee40cd6d95a39390

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 13a2965a2d103e73d0020d6f2d6f75f597dcaf0ba2f08955f87ed47ffb0ddcf7
MD5 7055ea7b389c9dc6d6bc692ffb602692
BLAKE2b-256 b6cdad79ffb5e8e6f770fddce29268fcdd593e76f30f9450e048c88ffc658b15

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 64526e712666b38b60032ec383692846ea5badad4676d137c1714ea88d925196
MD5 98dbb161c0d11c19cd320c983e793109
BLAKE2b-256 27c508f22a96ca0a6a0dbcbb1b8e914c1a57a6704bd6af42249344f2b0b498cd

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06436e537aa8e387b0f1e4e4f391d89d591740ed06a02150a271a9e1063f060f
MD5 13420941a42b31ca91ff1370c1119b6a
BLAKE2b-256 5f4dcc89a890e481102c87d46ceb58bf8264b98510ee95b2d9dc6a5ed6e4b700

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 812055a68d1f6baa496635fd863c22320fc04388c0ebdc81d2c0861a5a6fafca
MD5 6292cc882c811ae166725f955ea14f63
BLAKE2b-256 85dc45fece08dec51f23f00de7fdd98993992af98e2727c5adf98b8a11b8d05f

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1b933b2b865d9503a11112ba634907ec8ac87a5309f9eb1753fecf2b98f213b8
MD5 d1bb8c1bc353ca9a6ae2c848c281eaea
BLAKE2b-256 33998176de323a93a33e0115527b6c308b6b0783383e22030c969472ed328065

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6cb5003ea9120c560e07e6e1c07bb405ebe8685d45ac5f49ee4b2b32d0f4e578
MD5 94e233a40ad920e82949072e84e3a8ba
BLAKE2b-256 bd3e748b7d3cc7c572b456f7ba0f588864549741f5c125e8ff7799fe52042d9b

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.23-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.23-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 02915c620c650ae018ee71c9542b990d55b8d88e48d4e6bba6ae354ad0ba8182
MD5 11815599c719f09f2ad34df9401e7232
BLAKE2b-256 3858eeba031039285ccd71d0f8aab568ff87096201eb064f60b40f797b3543f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page