Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.24-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.24-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.24-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.24-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.24-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.24-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.24-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.24-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.24-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af8954d7e824d10353447f1a3d15f082ffde19e40b5cb93092bb20933ef30fd2
MD5 afc210b1cb1e66268b009d793e0e1e5e
BLAKE2b-256 bb06c99cc7178e548eb7a2325981398e8c1c24361b546c0d0e9ec8da64e77b77

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41c75129352eaf69d60dc2883518a2f7fdd190efb11ffc1986f41a6379b0fe9c
MD5 acb588423022c603fc41f17610ab1c63
BLAKE2b-256 07a8028ba406953585e01d2a55da4de4aef9b59760528137dc983aa3f4f50dfc

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1cfb523dd8d89bba943cf3e08feb00c38cbaeb287ab9ba16db63f883beaa6f45
MD5 5b4617755d036272e009aab9e6356175
BLAKE2b-256 1f36af1cb9e91866d8d591aabf5d9fc3db0c42adb0c32ea892fcb2391a206048

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 89d14f6ffd506ce6ce79e1881f6ed1d0a54d4269b7f5afc2cc8d7dde22207962
MD5 f2baa5808db00f1b8f55a0d18a0bd11e
BLAKE2b-256 e832a68b643640ba431f5aec4666debf4de765ed7e846c0a070a40fc31b8c3e6

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3daa1b54e115d94f3aa2065337f079b0c99786c03b880a080da5e5c44c2cdc60
MD5 cd3261359a738156a60b29cc70f67f1d
BLAKE2b-256 06f31740c5ff91ec7209c1a61e6413dc88aa5d137e3c5078928299269b4fd4a2

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 93c7e1406193497d12ccabdbc6ed7fa7c2789c1bb24533a509a7f87858cc94fc
MD5 54ee5a6d3ed392b6664232cd36356e39
BLAKE2b-256 03148f14921b7d5f71d525e36ff236dd8b7ef181d0b6ac885f7cb6643373fd4e

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8562ed63d6cdda38d1f89a60b105e40494d06d972593b155b1010f1e8bb1effd
MD5 2a03746121341cda191c14cace710c34
BLAKE2b-256 0cdbb56b6ef4b690bfadb07f99d694a2249b464565850a45baf5c33dc4485fea

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62c6085e68b748a967f125869541d641beb49c01b7affd402fd5848f3ea94784
MD5 0b3b459baebe98130aa0b7e5fdca3bb9
BLAKE2b-256 f89c00653f5bc475d6ac70b763e6776caf5c319422f3fb0a93ff6733842066a3

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f1882f4d879d12fb3ece228761a16f168d26e7e89cbeec103accacbd22155024
MD5 989b667858e6335e823cfd32da450860
BLAKE2b-256 ac007d16e7846f833fa4155c0ec850d567ae509242adbd2684899cc24c8a28f3

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d4ddd84d0e7fa8ce7b3a1887ce0bdd1565c8f2b582a4290c526454bf989554dc
MD5 be236c5386f35e7b44822aa3acbc0ca8
BLAKE2b-256 8e41c237bccce5d4adc20fa2d059ed330b6e502ac01928836bee0d34248cfa83

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b515efdadafb9b618a46e938592e55b686f6db62e0f1da79af4ca3877e95297a
MD5 034ba08bfdaa031b33ed8649e6684b42
BLAKE2b-256 13e58a80ec828ce6230dbd6509a8e4e4f13d6f76310eaec979314ddf2dc726c7

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.24-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.24-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d195f79fd12138362c36604a691dd17586cc19ac7ea804d5d35d879e3c06beca
MD5 03ad943ce8440a4fe7cb87eeec9040b6
BLAKE2b-256 76a80d2387dab3b9fa9f4f331b7676ad41d3c9c58bf8566d4f2faaaad78c49bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page