Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.25-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.25-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.25-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.25-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.25-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.25-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.25-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.25-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.25-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc44e59b851226a7e70d2a56bea37afaf6e208a0bc747a85ddc0481fd0e85f59
MD5 f2df3cdeaf8651cf179cf51eb33e20ee
BLAKE2b-256 574b5f6c78519d2330d08073a2d485713b512a40e319d28f403a7bf4db0597c7

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d18f6dc5d2f452a8f9a254d869786c8482ab1df6f42f56cb575e775da136ff
MD5 079a10b453a1d5583357641ffc1ce94f
BLAKE2b-256 e21332651ab8884879f58df298d6b00dca7e6eb74a93b776367147c624215090

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ed248a3468681d8d4a458682cedc106c6edc5beb1ba6390f30a829d8133137df
MD5 3f2beaca763f1f3da4fa86a2a6f622ef
BLAKE2b-256 57183ec3714981a82c81827b317bedca28eb9a6266513d2794cbb91f15eff28a

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 68e69d3cd15af02259fa9f51094cb5de5f30eaf51dfc22dd6c29fbb84a7b6085
MD5 047af4788a6e8124b6a361014c90831f
BLAKE2b-256 7800294672c7431c3b013e2b3e2e26aff010cde36f007d99b512fcfe6f092630

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a3d1aa718e641908be9862ce713fa9a736691ffb95009d961b0f13c57ef98d7
MD5 3449f995309535fe7219ff336c9402a8
BLAKE2b-256 c1c116b55cb88a49fc28022b2f73c1c1da3ad633306b8c2b3b2e084e0b7c55d6

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 db2203c8a5930e57afb5f8d1cf2a83b2ed6bf6507c8278d0056066bea77d58a6
MD5 186f40fdb985a478d816cb9c9c3f7746
BLAKE2b-256 da547311d42605336a7a8df4f877bae8d390624eda86be3215f2704db5c11bf0

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dd19becf2b0382baecd51a82e982c6d71bb43824df2acad737383eb779326604
MD5 684adf0b39b5f8065fe30cc18095785c
BLAKE2b-256 258a465d9d37ae48f0e2c0dea02edd5cad235bb8403aa215704aa7ea00379d46

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 832aae2df073e006080f6441e0d3c947e43aecf6226898288e1ce89a7a63cea9
MD5 4fc5a036259cdfd1eac69f2ff84b82e3
BLAKE2b-256 bf507406f921b6ba366ba27ee0f3210545db7222527e02d0e11d5328bbb6debd

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 631043a22cb3cc0892965b81510afbdc87a2b1e1a14d50da59d295759e1d650e
MD5 2430f1d4967ed921b27ddd6081108920
BLAKE2b-256 1957200360b6288f25dc89066ab504f5947e49ab9000fe43f00e8be57a6e0365

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a4c3a3103b507bc5937ea457944b0e299ca404d6a5e7424249a191bb677fbe4f
MD5 797f8a9df73b0a8e8e3fc1393398e509
BLAKE2b-256 e881916b8b06d36685c1fe71716aaa4342ab952456db98691198c921c55280fd

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a818f6bfe2a8bf107ef080eedaaf547b5cd2acea1b7a26fb3bbcf9486ca0c43
MD5 d0f2f3c0639102de9405b36f89b00549
BLAKE2b-256 5ae20b2dcd364cbc673068586adfd5c7562409f5757534c08eb355b47571e2cb

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.25-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.25-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d612a21cb33f7a61ac6f99133ad0db84e9d4c392ab39ad65502db3297b662a54
MD5 435ce6053bbe146ae1961d7981f21009
BLAKE2b-256 596d5f0ba1e68d9e340b540561d63ba8d62ce09f4e27c6c6596b1a42695dee33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page