Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.27-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.27-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.27-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.27-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.27-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.27-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.27-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.27-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.27-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.27-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.27-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.27-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.27-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6ab216f68885bc78fbcd1b9c7cf90fbfd6b739c48803218539c80eee547bd883
MD5 0cebe0b1527d3ecacae4a18df4dc7c2b
BLAKE2b-256 c2bdc33403b34dd538684238d03653ce3a9dcba548fac8dfe5dc1c12bca13e1c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1506c4f07027d0b5d96e36f0e35cde645c1072c9ca05ad376b43be793dfdec6f
MD5 575e5fdd81219d761b20f9ecb8bee039
BLAKE2b-256 c4ba43bcd381f390dcf737dfbb6881254656682842e11ea95194b8fbbe976c96

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 fd006f902e5dbd735dd538d6b380b722ae1746d9c0ea29ddc1b74c4b8c15bba6
MD5 8c8be64cb2e4c9066d7721f7c139f897
BLAKE2b-256 e5d95790c75be3d265c2467971f70fadd5539674a2ce54485eeb09e5567b3b63

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8cf8eaa70b7e4899cdd639c81c8a5110e631df06d20f4ad7ff9727e72bfbc711
MD5 b4679e15cccbabc8bb772410f746c1b2
BLAKE2b-256 13b7f1b47055bb124cdf31b17b4dc598530cdd3fb0f686a0acee52b1774d7c68

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 582b87c14167a3be9fcdd66f55de37d60e612b3c51b2c3740d02f3065f2e3198
MD5 ce10e37b4ec6b97cb9714a27a1a9b0a7
BLAKE2b-256 d68e2d6645642446e95169ab2287db0b864d02c66cbb23df1fc59dbf5d8730b1

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 2799bac1ea7b1d85222279eb8d6695a64a0ae6447e79609e0b4fc4a10ae1651b
MD5 49033ec2b24e41dfb51d3f7b22c7319f
BLAKE2b-256 8ac1dfb4441a5a7c40914607292f21d275ebdfe2a9bd2dde58f0e8113b01fcd0

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76dc24b74d6b4f87b0c412a03637bda717d1671bd5f03739c106ad78116f0512
MD5 3a73598f1476739509bcb614ca94aa10
BLAKE2b-256 f8ad5b30f2b0328893f02fe906dd1f1994a304913cc7e10869c31ac5dcf3d616

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a38c1523ea24a1797df3e93e610dc4b7202745bfb3f526a16eb64e17ad8fefc0
MD5 5bc5b410653dc175311cb7e37326f340
BLAKE2b-256 ec215343c0bd40338bd52c167ecb525d127e2dd499196851d317eb2ac3005ff9

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e4994619136b45acb8005e43d33aa3dbb559667f070e6f65882d95371a003af2
MD5 9f45ac935ac36f766447282b56854ee2
BLAKE2b-256 600d2ea186cc87713881ee1d5debe38c6e701be760574358cbe43b298ff9d225

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c0c21a596e42186cd239a5dc758b48fd7398f6e3583b28026135440cade0e326
MD5 2804064292e29f73fa47fa574285f526
BLAKE2b-256 ae4097b8816bd54e9bfc0619c925cf13f4cb8e0a546c1185bbced417f1722cb5

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2afc442b8f232a71de1a542a77558e3679982b095f079d714a3ab096dfc42c95
MD5 7589ebcd45f486c6f699e5ef9122bc8f
BLAKE2b-256 9dabc99c59c1e59e59ef1fa9d3bc7f3052c7785c665ea1a5609104bf117a2f8f

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.27-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.27-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 969d6eac4dfdb3e9e6b983e8f87aaf0df781e2d50e97976dde1c0f12a4fe086c
MD5 f3148b39a0f706a8b71ababb90e536a5
BLAKE2b-256 3e5c3f9b7cb48fd41ef134015a188c8fe04ade5faa9f4dd29fba6bfa9e9920da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page