Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.28-cp310-cp310-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.28-cp310-cp310-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_gpu-1.2.28-cp39-cp39-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.28-cp39-cp39-macosx_11_0_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_gpu-1.2.28-cp38-cp38-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.28-cp38-cp38-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.28-cp37-cp37m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.28-cp37-cp37m-macosx_10_15_x86_64.whl (39.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.28-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 42d75fd9dabd61b0190b5f45278aeaed2e0bade9e08524f59fc20e48b229c9bd
MD5 733804e2455ee14a6aca9ce4aa4736ae
BLAKE2b-256 2eaeb14a912748051d1060eb892816ab3cb89c1a74ed9cd185beb86762c31338

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c67f120387d4baf7a511002d19ef5238862791f121d64fbeb9718c56c6de3381
MD5 31c884803ee0d25f8aab9086a8f8a655
BLAKE2b-256 26233f05dab34a720e615fa7e4df8bfc2909ea901f263962ca45d6b44cabc4e2

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 c22c3769484db75e03e43bf8698298c7d23decc43ed241ae7ae9ee96aca086b5
MD5 5c44de757eefa868d347989ba4226a12
BLAKE2b-256 d2a2618df1bc0bd460e1d70d1d2d0fb2432aabd00c381b154316c2092522064a

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1761133f55b4c750c7fa217c434491a1781d69af87edc4e8d4e97d1e585a0d3b
MD5 7d394cbcf8b7e2c0286ef5a602f9ae0f
BLAKE2b-256 1da4e00cda500a4f39ea97cbb794334775f820be053fa38928ae14760aade5cc

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99e1744b7ce9c206eb811408f85ab01df272d1333c0345eeae3c1424cd3a0afd
MD5 903816b8dc04b9c6fe21a2de57175956
BLAKE2b-256 c25e8cb47af0ce69216c5c99f3c259304324388ba16723cd4b6bc96d24e7fe36

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 678853e47974ea64485bcd8d556ef737a97f0a04ec43a5f4780640558826c5ea
MD5 6284dc84b9c0bb2b688254d715e481f2
BLAKE2b-256 b1b53dd4eddbeb1cc3f2f93c0504e40ff436fd28b6c939c2c7b828902b715d5d

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e275cdfedfc4cb2c1a043f0296b975c02eae89cf08c4ac4962c0e9b5343d7f6f
MD5 da135aa0b3923e9d382723bb87f44121
BLAKE2b-256 6dfb771a00b9cf16579b77e0269f1010c3c97c3b67b937e884dee43710f47228

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 934abf28618c65e0ce984c7b6f0ea2daa6a24847e7570aa4d321604449af5492
MD5 b5df3f3a1068e58c143367b9ee242200
BLAKE2b-256 eadf687630f218c61ad20a78301fcad04a284d3094c6c55635084d1966405bba

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d7a730f510fdb806fed2efd3d8a3c369e485fb33a6c24ed855b63ed9288fd56d
MD5 c9f47d6c37c0bd5486ebfc9d8a1cdb46
BLAKE2b-256 c184da5584884d905aae3c6f544cdeb95c81deff2a3771718165308bef010328

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 33f1f63d9a30a4df33a5452bc1bc38e0de9c3549da62828a7836393a9401a0bc
MD5 b84359fba64b38bca252e59ba7e411a9
BLAKE2b-256 a158f053e8d64049937c9139c0cb6ea22298189a82aeb11ee2eb1e99cf6e12a3

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a12047f1f6a2d441988eba9186ffc3eeb3b0adf8eb6b359299bc652bf2d0cdd
MD5 8cce87c00756c4d6e464bb3acd7a99eb
BLAKE2b-256 559e34587515e2d56acf6317d2937aee9d5b02aad6cf63ef51e58367d19b8fcb

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.28-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.28-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 459651727cedc19f500370bb375a49917322b4d92eee5f12384ac7d49c55671e
MD5 9279598b72d2d92f0743144642758740
BLAKE2b-256 efdfc5aacb682f23f1658140de30389d2907ed94a65e3f1a8772d3580ba04b7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page