Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.8-cp310-cp310-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.8-cp310-cp310-macosx_10_15_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

accera_gpu-1.2.8-cp39-cp39-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.8-cp39-cp39-macosx_10_15_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

accera_gpu-1.2.8-cp38-cp38-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.8-cp38-cp38-macosx_10_15_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.8-cp37-cp37m-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.8-cp37-cp37m-macosx_10_15_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dab1503fb1df5dd06de348280207593366bce921e4d7d25a36d95d15ce77797a
MD5 9b084dc054f594b724664df2ba90be14
BLAKE2b-256 2e4e824a71bc82fb4a11f22cb95d9f2e362408b59729ab3c38dd5ddb59d24d31

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 694274ba01d06fc091719ccfc20ff59dbb421dd62f8d2b6613233e236a137ec8
MD5 38f3559b001988659d45290ce32caefb
BLAKE2b-256 1a41d44250f68632494104a7082de16be15a074dadb10f8441184ba06b6bac2a

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c30208c9110515351e6040e7422a74cc8496facedeff7dd18f1295e5e21c0c7b
MD5 5666fe320f3897233a184db9ab7f6ead
BLAKE2b-256 b030d2a76d121d897456393c5c4caf1d700ce6d7cde70be2f028625468d22b7b

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f430b23265c03f40237988c5dce8b0d5330b1d384707bd29263ac5a71d5bef2c
MD5 330fc0d9335604645ffcebb16d83c6c5
BLAKE2b-256 1a3d94487efe2d244699dab4eb8ba1c274baf65083b5e25516d548f0f3ab83ce

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a74a5ce3012761418de0f6ceb711c12892d8d6c699e64ea6b2128fc0763127d
MD5 de9e499f9aa8f0aa82c8d7f41543cd23
BLAKE2b-256 a2de1b9f0397ef5f06b05409db8682be3a8ac931def435934ab79ebce76d711e

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d70f236bc3b2d10ece5b959950cc47ea01b0aa2920407b30fb92fe0e335b1edf
MD5 2112bb24f3d6e9b647763e33e131bea5
BLAKE2b-256 a5cca0c7ce488d74dc99f29d8e26f82a013a2c5f61e6905e4bacb87421d7d717

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1e36478e663db92eba30d543e2ae9fe3abaa94e4a2e3a54259e373d3f618f5d8
MD5 213745238aad881356713688aa610b3b
BLAKE2b-256 354e63a515cf833bd0681eaec1aa11ec024afdfa28ea957cdf55fbf537d5af57

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54fe9b434ebb88cb3d063eabfcb73cffd835b960c42b012fdaba0ca04df5a607
MD5 f2229cbcf7894fb97cfbde79f0844c74
BLAKE2b-256 b8a62c526245abf186d3cbed8834dcf235eae40d3da8724fd54236a2dc2a4f7f

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4ed672ee201c00a10e70b72201da58cab0e80d3e6d38c19f7b8941c969388deb
MD5 a5a56feeac0903b41e287205d16c444b
BLAKE2b-256 9c0b1bcd4148a2fbfe8890073c5c269c8817f9adb1fa0b48f3fa1dcac742026d

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 329b423fb340258193bbd3c4523a5ff10726fb24dca5672f2ed02fb182ed8d20
MD5 b2bebe8579d1981f92f85cadc772af2f
BLAKE2b-256 a9b5a85b56b5f8686af9ee4ccdc319ebc6571cee12bf27e8cd8eb21ba8b76175

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b22299d47fd50f8a7f098ee9cbd22132a7521e5e11914bc32cf385757d8517fe
MD5 2aa67367f6f923611c6f6f7ec4f44420
BLAKE2b-256 5b2aee75dcdb582c784a84e199bb70c6298743c00013637cd6716c2b6aae1cdd

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.8-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.8-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 394c74ced1626187e38bc2fdb6cccafc325e1280cccdaa301361b69d12cd6566
MD5 987439ab6e3408d4c2d16eed0475b66b
BLAKE2b-256 7c18a317e9e763ea61ee0763b512a47f2970615dfa4695b3162895f2eda495b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page