Skip to main content

Acromine based Disambiguation of Entities From Text

Project description

Adeft

DOI License Build Documentation PyPI version Python 3

Adeft (Acromine based Disambiguation of Entities From Text context) is a utility for building models to disambiguate acronyms and other abbreviations of biological terms in the scientific literature. It makes use of an implementation of the Acromine algorithm developed by the NaCTeM at the University of Manchester to identify possible longform expansions for shortforms in a text corpus. It allows users to build disambiguation models to disambiguate shortforms based on their text context. A growing number of pretrained disambiguation models are publicly available to download through adeft.

Installation

Adeft works with Python versions 3.5 and above. It is available on PyPi and can be installed with the command

$ pip install adeft

Adeft's pretrained machine learning models can then be downloaded with the command

$ python -m adeft.download

If you choose to install by cloning this repository

$ git clone https://github.com/indralab/adeft.git

You should also run

$ python setup.py build_ext --inplace

at the top level of your local repository in order to build the extension module for alignment based longform detection and scoring.

Using Adeft

A dictionary of available models can be imported with from adeft import available_models

The dictionary maps shortforms to model names. It's possible for multiple equivalent shortforms to map to the same model.

Here's an example of running a disambiguator for ER on a list of texts

from adeft.disambiguate import load_disambiguator

er_dd = load_disambiguator('ER')

    ...

er_dd.disambiguate(texts)

Users may also build and train their own disambiguators. See the documention for more info.

Documentation

Documentation is available at https://adeft.readthedocs.io

Jupyter notebooks illustrating Adeft workflows are available under notebooks:

Testing

Adeft uses nosetests for unit testing, and is integrated with the Travis continuous integration environment. To run tests locally, make sure to install the test-specific requirements listed in setup.py as

pip install adeft[test]

and download all pre-trained models as shown above. Then run nosetests in the top-level adeft folder.

Funding

Development of this software was supported by the Defense Advanced Research Projects Agency under award W911NF018-1-0124 and the National Cancer Institute under award U54-CA225088.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

adeft-0.5.3.tar.gz (118.7 kB view details)

Uploaded Source

File details

Details for the file adeft-0.5.3.tar.gz.

File metadata

  • Download URL: adeft-0.5.3.tar.gz
  • Upload date:
  • Size: 118.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.5

File hashes

Hashes for adeft-0.5.3.tar.gz
Algorithm Hash digest
SHA256 15caf8fd38bc6ac610df2aa4e2f7f32260ad3580c2ae1f9ecdf832e62e0cbb36
MD5 724125ff220167f41ac1e0a2f9ab0d74
BLAKE2b-256 b0c457b8f945a1eb88bf57410ad6089175e5658b8be7ad8d073a6529b52e42bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page