Skip to main content

Miscellaneous MCMC samplers written in Aesara

Project description

Tests Status Coverage Gitter

AeMCMC is a Python library that automates the construction of samplers for Aesara graphs that represent statistical models.

Features

This project is currently in an alpha state, but the basic features/objectives are currently as follows:

  • Provide utilities that simplify the process of constructing Aesara graphs/functions for posterior and posterior predictive sampling

  • Host a wide array of “exact” posterior sampling steps (e.g. Gibbs steps, scale-mixture/decomposition-based conditional samplers, etc.)

  • Build a framework for identifying and composing said sampler steps and enumerating the possible samplers for an arbitrary model

Overall, we would like this project to serve as a hub for community-sourced specialized samplers and facilitate their general use.

Getting started

Using AeMCMC, one can construct sampling steps from a graph containing Aesara RandomVariables. AeMCMC analyzes the model graph and possibly rewrites it to find the most suitable sampler.

AeMCMC can recognize closed-form posteriors; for instance the following Beta-Binomial model amounts to sampling from a Beta distribution:

import aesara
import aemcmc
import aesara.tensor as at

srng = at.random.RandomStream(0)

p_rv = srng.beta(1., 1., name="p")
Y_rv = srng.binomial(10, p_rv, name="Y")

y_vv = Y_rv.clone()
y_vv.name = "y"

sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)

p_posterior_step = sampler.sample_steps[p_rv]
aesara.dprint(p_posterior_step)
# beta_rv{0, (0, 0), floatX, False}.1 [id A]
#  |RandomGeneratorSharedVariable(<Generator(PCG64) at 0x7F77B2831200>) [id B]
#  |TensorConstant{[]} [id C]
#  |TensorConstant{11} [id D]
#  |Elemwise{add,no_inplace} [id E]
#  | |TensorConstant{1.0} [id F]
#  | |y [id G]
#  |Elemwise{sub,no_inplace} [id H]
#    |Elemwise{add,no_inplace} [id I]
#    | |TensorConstant{1.0} [id F]
#    | |TensorConstant{10} [id J]
#    |y [id G]

sample_fn = aesara.function([y_vv], p_posterior_step)

AeMCMC also contains a database of Gibbs samplers that can be used to sample some models more efficiently than a general-purpose sampler like NUTS would:

import aemcmc
import aesara
import aesara.tensor as at

srng = at.random.RandomStream(0)

X = at.matrix("X")

# Horseshoe prior for `beta_rv`
tau_rv = srng.halfcauchy(0, 1, name="tau")
lmbda_rv = srng.halfcauchy(0, 1, size=X.shape[1], name="lambda")
beta_rv = srng.normal(0, lmbda_rv * tau_rv, size=X.shape[1], name="beta")

a = at.scalar("a")
b = at.scalar("b")
h_rv = srng.gamma(a, b, name="h")

# Negative-binomial regression
eta = X @ beta_rv
p = at.sigmoid(-eta)
Y_rv = srng.nbinom(h_rv, p, name="Y")

y_vv = Y_rv.clone()
y_vv.name = "y"

sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)

# `sampler.sample_steps` contains the sample step for each random variable
print(sampler.sample_steps[h_rv])
# h_posterior

# `sampler.stages` contains the sampling kernels sorted by scan order
print(sampler.stages)
# {HorseshoeGibbsKernel: [tau, lambda], NBRegressionGibbsKernel: [beta], DispersionGibbsKernel: [h]}

# Build a function that returns new samples
to_sample_rvs = [tau_rv, lmbda_rv, beta_rv, h_rv]
inputs = [a, b, X, y_vv] + [initial_values[rv] for rv in to_sample_rvs]
outputs = [sampler.sample_steps[rv] for rv in to_sample_rvs]
sample_fn = aesara.function(inputs, outputs, updates=sampler.updates)

In case no specialized sampler is found, AeMCMC assigns the NUTS sampler to the remaining variables. AeMCMC reparametrizes the model automatically to improve sampling if needed:

import aemcmc
import aesara
import aesara.tensor as at

srng = at.random.RandomStream(0)
mu_rv = srng.normal(0, 1, name="mu")
sigma_rv = srng.halfnormal(0.0, 1.0, name="sigma")
Y_rv = srng.normal(mu_rv, sigma_rv, name="Y")

y_vv = Y_rv.clone()

sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)

print(sampler.sample_steps.keys())
# dict_keys([sigma, mu])
print(sampler.stages)
# {NUTSKernel: [sigma, mu]}
print(sampler.parameters)
# {NUTSKernel: (step_size, inverse_mass_matrix)}

# Build a function that returns new samples
step_size, inverse_mass_matrix = list(sampler.parameters.values())[0]
inputs = [
    initial_values[mu_rv],
    initial_values[sigma_rv],
    y_vv,
    step_size,
    inverse_mass_matrix
]
outputs = [sampler.sample_steps[mu_rv], sampler.sample_steps[sigma_rv]]
sample_fn = aesara.function(inputs, outputs, updates=sampler.updates)

Installation

The latest release of AeMCMC can be installed from PyPI using pip:

pip install aemcmc

Or via conda-forge:

conda install -c conda-forge aemcmc

The current development branch of AeMCMC can be installed from GitHub, also using pip:

pip install git+https://github.com/aesara-devs/aemcmc

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aemcmc-nightly-0.0.7.dev20230130.tar.gz (43.3 kB view details)

Uploaded Source

File details

Details for the file aemcmc-nightly-0.0.7.dev20230130.tar.gz.

File metadata

File hashes

Hashes for aemcmc-nightly-0.0.7.dev20230130.tar.gz
Algorithm Hash digest
SHA256 0ee4766bfd843189ae8e34f98e9192e4405bbb77662b495078286a685b940731
MD5 cc7aeb62310af76a713abbb5e9707004
BLAKE2b-256 b4c151b11c602451a636dcd082678cd285031946056d6ca8ef1c2e131c67800f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page