Skip to main content

PPL tools for Aesara

Project description

Tests Status Coverage

aeppl provides tools for a[e]PPL written in Aesara.

Features

  • Convert graphs containing Aesara RandomVariables into joint log-probability graphs

  • Transforms for RandomVariables that map constrained support spaces to unconstrained spaces (e.g. the extended real numbers), and a rewrite that automatically applies these transformations throughout a graph

  • Tools for traversing and transforming graphs containing RandomVariables

  • RandomVariable-aware pretty printing and LaTeX output

Examples

Using aeppl, one can create a joint log-probability graph from a graph containing Aesara RandomVariables:

import aesara
from aesara import tensor as at

from aeppl import joint_logprob, pprint


# A simple scale mixture model
S_rv = at.random.invgamma(0.5, 0.5)
Y_rv = at.random.normal(0.0, at.sqrt(S_rv))

# Compute the joint log-probability
y = at.scalar("y")
s = at.scalar("s")
logprob = joint_logprob({Y_rv: y, S_rv: s})

Log-probability graphs are standard Aesara graphs, so we can compute values with them:

logprob_fn = aesara.function([y, s], logprob)

logprob_fn(-0.5, 1.0)
# array(-2.46287705)

Graphs can also be pretty printed:

from aeppl import pprint, latex_pprint


# Print the original graph
print(pprint(Y_rv))
# b ~ invgamma(0.5, 0.5) in R, a ~ N(0.0, sqrt(b)**2) in R
# a

print(latex_pprint(Y_rv))
# \begin{equation}
#   \begin{gathered}
#     b \sim \operatorname{invgamma}\left(0.5, 0.5\right)\,  \in \mathbb{R}
#     \\
#     a \sim \operatorname{N}\left(0.0, {\sqrt{b}}^{2}\right)\,  \in \mathbb{R}
#   \end{gathered}
#   \\
#   a
# \end{equation}

# Simplify the graph so that it's easier to read
from aesara.graph.opt_utils import optimize_graph
from aesara.tensor.basic_opt import topo_constant_folding


logprob = optimize_graph(logprob, custom_opt=topo_constant_folding)


print(pprint(logprob))
# s in R, y in R
# (switch(s >= 0.0,
#         ((-0.9189385175704956 +
#           switch(s == 0, -inf, (-1.5 * log(s)))) - (0.5 / s)),
#         -inf) +
#  ((-0.9189385332046727 + (-0.5 * ((y / sqrt(s)) ** 2))) - log(sqrt(s))))

Joint log-probabilities can be computed for some terms that are derived from RandomVariables, as well:

# Create a switching model from a Bernoulli distributed index
Z_rv = at.random.normal([-100, 100], 1.0, name="Z")
I_rv = at.random.bernoulli(0.5, name="I")

M_rv = Z_rv[I_rv]
M_rv.name = "M"

z = at.vector("z")
i = at.lscalar("i")
m = at.scalar("m")
# Compute the joint log-probability for the mixture
logprob = joint_logprob({M_rv: m, Z_rv: z, I_rv: i})


logprob = optimize_graph(logprob, custom_opt=topo_constant_folding)

print(pprint(logprob))
# i in Z, m in R, a in Z
# (switch((0 <= i and i <= 1), -0.6931472, -inf) +
#  ((-0.9189385332046727 + (-0.5 * (((m - [-100  100][a]) / [1. 1.][a]) ** 2))) -
#   log([1. 1.][a])))

Installation

The latest release of aeppl can be installed from PyPI using pip:

pip install aeppl

The current development branch of aeppl can be installed from GitHub, also using pip:

pip install git+https://github.com/aesara-devs/aeppl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aeppl-0.0.10.tar.gz (43.3 kB view details)

Uploaded Source

File details

Details for the file aeppl-0.0.10.tar.gz.

File metadata

  • Download URL: aeppl-0.0.10.tar.gz
  • Upload date:
  • Size: 43.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for aeppl-0.0.10.tar.gz
Algorithm Hash digest
SHA256 1fc6e0967d51cd6ce2e080232cc8a85eec33ddad0c9be1ac3c9df62297dd934e
MD5 ef0f37781c2e6b69730cd270a9d69571
BLAKE2b-256 46bd78373dd5745be53ee3639dab941578d805a130f3b859f54385f1a4f1d615

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page