Skip to main content

PPL tools for Aesara

Project description

Tests Status Coverage Join the chat at https://gitter.im/aesara-devs/aeppl

aeppl provides tools for a[e]PPL written in Aesara.

Features

  • Convert graphs containing Aesara RandomVariables into joint log-probability graphs

  • Transforms for RandomVariables that map constrained support spaces to unconstrained spaces (e.g. the extended real numbers), and a rewrite that automatically applies these transformations throughout a graph

  • Tools for traversing and transforming graphs containing RandomVariables

  • RandomVariable-aware pretty printing and LaTeX output

Examples

Using aeppl, one can create a joint log-probability graph from a graph containing Aesara RandomVariables:

import aesara
from aesara import tensor as at

from aeppl import joint_logprob, pprint


# A simple scale mixture model
S_rv = at.random.invgamma(0.5, 0.5)
Y_rv = at.random.normal(0.0, at.sqrt(S_rv))

# Compute the joint log-probability
y = at.scalar("y")
s = at.scalar("s")
logprob = joint_logprob({Y_rv: y, S_rv: s})

Log-probability graphs are standard Aesara graphs, so we can compute values with them:

logprob_fn = aesara.function([y, s], logprob)

logprob_fn(-0.5, 1.0)
# array(-2.46287705)

Graphs can also be pretty printed:

from aeppl import pprint, latex_pprint


# Print the original graph
print(pprint(Y_rv))
# b ~ invgamma(0.5, 0.5) in R, a ~ N(0.0, sqrt(b)**2) in R
# a

print(latex_pprint(Y_rv))
# \begin{equation}
#   \begin{gathered}
#     b \sim \operatorname{invgamma}\left(0.5, 0.5\right)\,  \in \mathbb{R}
#     \\
#     a \sim \operatorname{N}\left(0.0, {\sqrt{b}}^{2}\right)\,  \in \mathbb{R}
#   \end{gathered}
#   \\
#   a
# \end{equation}

# Simplify the graph so that it's easier to read
from aesara.graph.opt_utils import optimize_graph
from aesara.tensor.basic_opt import topo_constant_folding


logprob = optimize_graph(logprob, custom_opt=topo_constant_folding)


print(pprint(logprob))
# s in R, y in R
# (switch(s >= 0.0,
#         ((-0.9189385175704956 +
#           switch(s == 0, -inf, (-1.5 * log(s)))) - (0.5 / s)),
#         -inf) +
#  ((-0.9189385332046727 + (-0.5 * ((y / sqrt(s)) ** 2))) - log(sqrt(s))))

Joint log-probabilities can be computed for some terms that are derived from RandomVariables, as well:

# Create a switching model from a Bernoulli distributed index
Z_rv = at.random.normal([-100, 100], 1.0, name="Z")
I_rv = at.random.bernoulli(0.5, name="I")

M_rv = Z_rv[I_rv]
M_rv.name = "M"

z = at.vector("z")
i = at.lscalar("i")
m = at.scalar("m")
# Compute the joint log-probability for the mixture
logprob = joint_logprob({M_rv: m, Z_rv: z, I_rv: i})


logprob = optimize_graph(logprob, custom_opt=topo_constant_folding)

print(pprint(logprob))
# i in Z, m in R, a in Z
# (switch((0 <= i and i <= 1), -0.6931472, -inf) +
#  ((-0.9189385332046727 + (-0.5 * (((m - [-100  100][a]) / [1. 1.][a]) ** 2))) -
#   log([1. 1.][a])))

Installation

The latest release of aeppl can be installed from PyPI using pip:

pip install aeppl

The current development branch of aeppl can be installed from GitHub, also using pip:

pip install git+https://github.com/aesara-devs/aeppl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aeppl-0.0.34.tar.gz (61.0 kB view details)

Uploaded Source

Built Distribution

aeppl-0.0.34-py3-none-any.whl (49.5 kB view details)

Uploaded Python 3

File details

Details for the file aeppl-0.0.34.tar.gz.

File metadata

  • Download URL: aeppl-0.0.34.tar.gz
  • Upload date:
  • Size: 61.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for aeppl-0.0.34.tar.gz
Algorithm Hash digest
SHA256 c346e97a22462ebf77666492a8cba7c543e30064d95539d38ec3ee4fc61b1a59
MD5 56b1ada9c8df95b05d26e4cd58c9fcf4
BLAKE2b-256 5b6bd2b82acdcf4106466805014082464146840a204c113eff60125561a8a9f7

See more details on using hashes here.

File details

Details for the file aeppl-0.0.34-py3-none-any.whl.

File metadata

  • Download URL: aeppl-0.0.34-py3-none-any.whl
  • Upload date:
  • Size: 49.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for aeppl-0.0.34-py3-none-any.whl
Algorithm Hash digest
SHA256 63e3104a165200c3bb706b8c9b769f7b6dce17fad1ad90cbb805a2da21d038db
MD5 83c38472fbbeede712ca129cd0bc3633
BLAKE2b-256 2e04f62d094aadae089d2f61a43f4b60f8e1bc198e466411f99b84b006a71698

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page