Skip to main content

Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs.

Project description

Aesara is a Python library that allows you to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays. It is built on top of NumPy. Aesara features:

  • tight integration with NumPy: a similar interface to NumPy’s. numpy.ndarrays are also used internally in Aesara-compiled functions.

  • transparent use of a GPU: perform data-intensive computations up to 140x faster than on a CPU (support for float32 only).

  • efficient symbolic differentiation: Aesara can compute derivatives for functions of one or many inputs.

  • speed and stability optimizations: avoid nasty bugs when computing expressions such as log(1 + exp(x)) for large values of x.

  • dynamic C code generation: evaluate expressions faster.

  • extensive unit-testing and self-verification: includes tools for detecting and diagnosing bugs and/or potential problems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aesara-nightly-2.5.0.dev20220311.tar.gz (1.5 MB view details)

Uploaded Source

File details

Details for the file aesara-nightly-2.5.0.dev20220311.tar.gz.

File metadata

  • Download URL: aesara-nightly-2.5.0.dev20220311.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for aesara-nightly-2.5.0.dev20220311.tar.gz
Algorithm Hash digest
SHA256 63f69a473f0b9139997f208ec03ae60ced581ffba4dad644a59372777d9fa164
MD5 b143c327395dd2605261c722f62defb4
BLAKE2b-256 b7a45b62cca9ebd28195332db72307fc8ca0bf92fc654ff28ec06f6803509450

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page