Skip to main content

Optimizing compiler for evaluating mathematical expressions on CPUs and GPUs.

Project description

Aesara is a Python library that allows you to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays. It is built on top of NumPy. Aesara features:

  • tight integration with NumPy: a similar interface to NumPy’s. numpy.ndarrays are also used internally in Aesara-compiled functions.

  • transparent use of a GPU: perform data-intensive computations up to 140x faster than on a CPU (support for float32 only).

  • efficient symbolic differentiation: Aesara can compute derivatives for functions of one or many inputs.

  • speed and stability optimizations: avoid nasty bugs when computing expressions such as log(1 + exp(x)) for large values of x.

  • dynamic C code generation: evaluate expressions faster.

  • extensive unit-testing and self-verification: includes tools for detecting and diagnosing bugs and/or potential problems.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aesara-nightly-2.5.3.dev20220321.tar.gz (1.5 MB view details)

Uploaded Source

File details

Details for the file aesara-nightly-2.5.3.dev20220321.tar.gz.

File metadata

  • Download URL: aesara-nightly-2.5.3.dev20220321.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.11

File hashes

Hashes for aesara-nightly-2.5.3.dev20220321.tar.gz
Algorithm Hash digest
SHA256 d0427b25d8cdf4f5cdaa008fca5800010e5d35a9e1c89edb7708bc83c84094f3
MD5 d4b30ac1a0553063025da6bb5a3888fc
BLAKE2b-256 0374073a03e28e26ef95da8e543a417b823e3a74276a7211cdf4ac1d76b37106

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page