Skip to main content

AiiDA plugin SSSP verification workflows

Project description

Build Status Coverage Status Docs status PyPI version

aiida-sssp-workflow

The aiida-sssp-workflow is an aiida plugin to run the verification for a given pseudopotential. The plugin contains workflows to verify the pseudopotential. It can:

  1. evaluate the delta factor of the pseudopotential with respect to WIEN2K all-electrons results.
  2. Converge test on varies of properties to give a recommended energy cutoff of the pseudopotential, include properties:
    1. Cohesive energy
    2. phonon frequencies
    3. pressure
    4. bands distance

The computational details to running the calculation

Input Structures:

  • In Δ-factor calculation: most stable elemental system from Cottenier's work and rare-earth nitrides from Topsakal-Wentzkovitch work;
  • Phonon, pressure, cohesive energy: Cottenier's structures (except SiF4 has been used for F because of convergence issues) and rare-earth nitrides; Use primitive cells.
  • Bands: Cottenier's structures reduced to primitive cells (except SiF4 has been used for F because of convergence issues) and rare-earth nitrides. PwbandWorkflow will make a primitive cell for band calculation (Remember to turn off the relax step).

Parameters of Δ calculations

  • wave function cutoffs: 200 Ry;
  • dual = 8 (PAW/US), 4 (NC); Mn/Fe/Co have larger duals tested as well; 12 and 16. We have gone in a mode where we do not use the dual, but we use ECUTRHO and ECUTWFC. However, dual is still used in simply setting the ecutwfc/ecutrho pairs.
  • k-points: 0.1A^-1;
  • smearing (degauss): Marzari-Vanderbilt, 0.01 Ry;
  • non spin-polarized calculations except Mn (antiferromagnetic), O and Cr (antiferromagnetic), Fe, Co, and Ni (ferromagnetic).

As for calculation of lanthenide, always increase nbnd to two times of the default number.

Parameters in phonon, pressure, cohesive energy calculations:

  • k-points: 0.15A^-1
  • smearing: Marzari-Vanderbilt, 0.01 Ry;
  • k-points for the isolated atoms: 1x1x1;
  • smearing for the isolated atoms: gaussian 0.01 Ry;
  • unit cell for the isolated atoms: 12x12x12 Å with atom sit in [6.0, 6.0, 6.0] the middle of the cell;
  • q-point: only calculate the phonon frequencies on Brillouin-Zone border q=(0.5, 0.5, 0.5).
  • all calculations non-spin-polarized.

In isolate atom energy calculation of cohesive energy evaluation. As for lanthenide, increase nbnd to three times of the default number. Moreover, use more RAM(by increase num_machine to 4).

NOTE: PWscf writes in the output something called total energy. This is NOT the total energy when you have smearing; it’s the total free energy E-TS. PWscf also writes -TS, so one can get back the total energy E. In general (for a metal) E-TS should be used. For an atom instead the total energy should be used, since the -TS term is not really physical (it comes from the entropy of fractional occupations on the atom). Check with Nicola if you have atoms where -TS is different from zero. (http://theossrv1.epfl.ch/Main/ElectronicTemperature)

The convergence pattern for the phonons is calculated as:
  • circle = (1/N * ∑i=1,N [ωi(cutoff) - ωi(200Ry)]2 / ωi(200Ry)2)1/2 * 100 (in percentage) and half error bar = Max |[ω(cutoff) - ω(200Ry)] / ω(200Ry)| * 100, if the highest frequency is more than 100 cm-1;
  • circle = (1/N * ∑i=1,N [ωi(cutoff) - ωi(200Ry)]2)1/2 (absolute value) and half error bar = Max |ωi(cutoff) - ω(200Ry)|, if the highest frequency is less than 100 cm-1;
  • N is the total number of frequencies;
  • For some elements, we have neglected the first n frequencies in the summation above, because the frequencies are negative and/or with strong oscillations as function of the cutoff for all the considered pseudos). We have neglected the first four frequencies for H and I, 12 for N and Cl, 6 for O and SiF4 (which replaces F).

Bands calculations:

  • k-points for the self-consistent calculation: 0.1; (can use cache one for the latter calculation)
  • k-points for the bands calculation (as in, calculations of the eta and eta10 factors): uniform mesh 0.2 with no symmetry reduction, rather than high-symmetry path which is not determinant;
  • smearing: Marzari-Vanderbilt, 0.01 Ry in scf calculation and Fermi-Dirac in bands distance calculation;
  • all calculations non spin-polarized.

Repository contents

Features

More meta-info collection

SiF4 structure and its (V0, B0, B1) reference value

Re-generate the SiF4 structure start from the cif file from COD database. Detail inputs parameters are list below.

Pseudopotentials(SSSP-v1.1 precision)

  • Si: Si.pbe-n-rrkjus_psl.1.0.0.UPF
  • F: F.oncvpsp.upf

Pw relax and eos

pwscf parameters
'SYSTEM': {
    'degauss': 0.00735,
    'ecutrho': 1600,
    'ecutwfc': 200,
    'occupations': 'smearing',
    'smearing': 'marzari-vanderbilt',
},
'ELECTRONS': {
    'conv_thr': 1e-10,
},
EOS parameters
  • seven points
  • 0.02 interval

License

MIT

Contact

morty.yeu@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file aiida_sssp_workflow-0.1.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aiida_sssp_workflow-0.1.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb229ba7c1f1f5a45cb7187f36d5bdcb21f411690070c493831e262725e82db0
MD5 43108bd9765f27b1006716310494428e
BLAKE2b-256 aede3d9d529b0e9b73319ba83083aa98fac96d6997c8f530e5d4c770351de4fa

See more details on using hashes here.

Provenance

File details

Details for the file aiida_sssp_workflow-0.1.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aiida_sssp_workflow-0.1.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a89e14323c083d773498a3aaaa2fdeb9e059af441c27b142c8b80c4715dbb506
MD5 e9e53263089487bc99543db1ac056c61
BLAKE2b-256 deb9712bda4cb836abbe9ec4bd8119fe19c00c5b0ef3fafaf3b84f082362f507

See more details on using hashes here.

Provenance

File details

Details for the file aiida_sssp_workflow-0.1.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for aiida_sssp_workflow-0.1.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 827e25e084eb7ebfe1955109be0fbea5ab301b35798833d6e1493c5f9c2ef4cc
MD5 2067d0ac24dc7942e09a4c2f7015b85a
BLAKE2b-256 e12e8e0615090fb1dbce2b2890f471598dd8347f2e20242b618a29418e53f4d8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page