Skip to main content

Asynchronous redis cache

Project description

https://travis-ci.org/argaen/aiocache.svg?branch=master https://codecov.io/gh/argaen/aiocache/branch/master/graph/badge.svg https://badge.fury.io/py/aiocache.svg https://img.shields.io/pypi/pyversions/aiocache.svg

The asyncio cache that implements multiple backends.

This library aims for simplicity over specialization. It provides a common interface for all caches which allows to store any python object. The operations supported by all backends are:

  • add

  • get

  • set

  • multi_get

  • multi_set

  • delete

  • exists

  • expire

  • clear

  • raw: Sends raw command to the underlying client

How does it work

Aiocache provides 3 main entities:

  • backends: Allow you specify which backend you want to use for your cache. Currently supporting: SimpleMemoryCache, RedisCache using aioredis and MemCache using aiomcache.

  • serializers: Serialize and deserialize the data between your code and the backends. This allows you to save any Python object into your cache. Currently supporting: DefaultSerializer, PickleSerializer, JsonSerializer.

  • plugins: Implement a hooks system that allows to execute extra behavior before and after of each command.

If you are missing an implementation of backend, serializer or plugin you think it could be interesting for the package, do not hesitate to open a new issue.

docs/images/architecture.png

Those 3 entities combine during some of the cache operations to apply the desired command (backend), data transformation (serializer) and pre/post hooks (plugins). To have a better vision of what happens, here you can check how set function works in aiocache:

docs/images/set_operation_flow.png

Usage

Install the package with pip install aiocache.

simple redis

import asyncio

from aiocache import RedisCache


cache = RedisCache(endpoint="127.0.0.1", port=6379, namespace="main")


async def redis():
    await cache.set("key", "value")
    await cache.set("expire_me", "value", ttl=10)

    assert await cache.get("key") == "value"
    assert await cache.get("expire_me") == "value"
    assert await cache.raw("ttl", "main:expire_me") > 0


def test_redis():
    loop = asyncio.get_event_loop()
    loop.run_until_complete(redis())
    loop.run_until_complete(cache.delete("key"))
    loop.run_until_complete(cache.delete("expire_me"))


if __name__ == "__main__":
    test_redis()

cached decorator

import asyncio

from collections import namedtuple

from aiocache import cached, RedisCache
from aiocache.serializers import PickleSerializer

Result = namedtuple('Result', "content, status")


@cached(ttl=10, cache=RedisCache, serializer=PickleSerializer())
async def async_main():
    print("First ASYNC non cached call...")
    await asyncio.sleep(1)
    return Result("content", 200)


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    print(loop.run_until_complete(async_main()))
    print(loop.run_until_complete(async_main()))
    print(loop.run_until_complete(async_main()))
    print(loop.run_until_complete(async_main()))

The decorator by default will use the SimpleMemoryCache backend and the DefaultSerializer. If you want to use a different backend, you can call it with cached(ttl=10, backend=RedisCache). Also, if you want to use a specific serializer just use cached(ttl=10, serializer=DefaultSerializer())

Documentation

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aiocache-0.3.0.tar.gz (11.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page