AllenNLP integration for hyperparameter optimization
Project description
AllenNLP subcommand for hyperparameter optimization
0. Documentation
You can read the documentation on readthedocs.
1. Install
pip install allennlp_optuna
2. Optimization
2.1 AllenNLP config
Model configuration written in Jsonnet.
You have to replace values of hyperparameters with jsonnet function std.extVar
.
Remember casting external variables to desired types by std.parseInt
, std.parseJson
.
local lr = 0.1; // before
↓↓↓
local lr = std.parseJson(std.extVar('lr')); // after
For more information, please refer to AllenNLP Guide.
2.2 Define hyperparameter search speaces
You can define search space in Json.
Each hyperparameter config must have type
and keyword
.
You can see what parameters are available for each hyperparameter in
Optuna API reference.
[
{
"type": "int",
"attributes": {
"name": "embedding_dim",
"low": 64,
"high": 128
}
},
{
"type": "int",
"attributes": {
"name": "max_filter_size",
"low": 2,
"high": 5
}
},
{
"type": "int",
"attributes": {
"name": "num_filters",
"low": 64,
"high": 256
}
},
{
"type": "int",
"attributes": {
"name": "output_dim",
"low": 64,
"high": 256
}
},
{
"type": "float",
"attributes": {
"name": "dropout",
"low": 0.0,
"high": 0.5
}
},
{
"type": "float",
"attributes": {
"name": "lr",
"low": 5e-3,
"high": 5e-1,
"log": true
}
}
]
Parameters for suggest_#{type}
are available for config of type=#{type}
. (e.g. when type=float
,
you can see the available parameters in suggest_float
Please see the example in detail.
2.3 [Optional] Specify Optuna configurations
You can choose a pruner/sample implemented in Optuna. To specify a pruner/sampler, create a JSON config file
The example of optuna.json looks like:
{
"pruner": {
"type": "HyperbandPruner",
"attributes": {
"min_resource": 1,
"reduction_factor": 5
}
},
"sampler": {
"type": "TPESampler",
"attributes": {
"n_startup_trials": 5
}
}
}
2.4 Optimize hyperparameters by allennlp cli
poetry run allennlp tune \
config/imdb_optuna.jsonnet \
config/hparams.json \
--optuna-param-path config/optuna.json \
--serialization-dir result \
--study-name test
3. Get best hyperparameters
poetry run allennlp best-params \
--study-name test
4. Retrain a model with optimized hyperparameters
poetry run allennlp retrain \
config/imdb_optuna.jsonnet \
--serialization-dir retrain_result \
--study-name test
5. Hyperparameter optimization at scale!
you can run optimizations in parallel.
You can easily run distributed optimization by adding an option
--skip-if-exists
to allennlp tune
command.
poetry run allennlp tune \
config/imdb_optuna.jsonnet \
config/hparams.json \
--optuna-param-path config/optuna.json \
--serialization-dir result \
--study-name test \
--skip-if-exists
allennlp-optuna uses SQLite as a default storage for storing results. You can easily run distributed optimization over machines by using MySQL or PostgreSQL as a storage.
For example, if you want to use MySQL as a storage, the command should be like following:
poetry run allennlp tune \
config/imdb_optuna.jsonnet \
config/hparams.json \
--optuna-param-path config/optuna.json \
--serialization-dir result \
--study-name test \
--storage mysql://<user_name>:<passwd>@<db_host>/<db_name> \
--skip-if-exists
You can run the above command on each machine to run multi-node distributed optimization.
If you want to know about a mechanism of Optuna distributed optimization, please see the official documentation: https://optuna.readthedocs.io/en/stable/tutorial/004_distributed.html
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file allennlp_optuna-0.1.3.tar.gz
.
File metadata
- Download URL: allennlp_optuna-0.1.3.tar.gz
- Upload date:
- Size: 6.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.10 CPython/3.8.5 Darwin/19.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3606bbc9b804cd7f912eeccb14021f1d37d4f38ea243cb7705c73a01cfd72798 |
|
MD5 | 23f87cd231c5f91b3c54375903a4ee33 |
|
BLAKE2b-256 | 4de4a1c2b20bf782bcae530df08667eef04e6fd1ad08b00305c62569cd7a56f7 |
File details
Details for the file allennlp_optuna-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: allennlp_optuna-0.1.3-py3-none-any.whl
- Upload date:
- Size: 6.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.10 CPython/3.8.5 Darwin/19.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4998b1a5a34df7ca5b5814e49c17abf4d7e993566a3aba10749bfa475bc44ea8 |
|
MD5 | 7df000f7c7f056e997414fc8192ca1da |
|
BLAKE2b-256 | 73f0dc49c74b3cd3bacba7f46a37eb6c8a8dad09f0176a1adc25aaeaf46c9d1a |