AllenNLP integration for hyperparameter optimization
Project description
AllenNLP subcommand for hyperparameter optimization
allennlp-optuna
is AllenNLP plugin for
hyperparameter optimization using Optuna.
Supported environments
Machine \ Device | Single GPU | Multi GPUs |
---|---|---|
Single Node | :white_check_mark: | Partial |
Multi Nodes | :white_check_mark: | Partial |
AllenNLP provides a way of distributed training (https://medium.com/ai2-blog/c4d7c17eb6d6).
Unfortunately, allennlp-optuna
doesn't fully support this feature.
With multiple GPUs, you can run hyperparameter optimization.
But you cannot enable a pruning feature.
(For more detail, please see himkt/allennlp-optuna#20
and optuna/optuna#1990)
Alternatively, allennlp-optuna
supports distributed optimization with multiple machines.
Please read the tutorial about
distributed optimization in allennlp-optuna
.
You can also learn about a mechanism of Optuna in the paper
or documentation.
Documentation
You can read the documentation on readthedocs.
1. Installation
pip install allennlp_optuna
# Create .allennlp_plugins at the top of your repository or $HOME/.allennlp/plugins
# For more information, please see https://github.com/allenai/allennlp#plugins
echo 'allennlp_optuna' >> .allennlp_plugins
2. Optimization
2.1. AllenNLP config
Model configuration written in Jsonnet.
You have to replace values of hyperparameters with jsonnet function std.extVar
.
Remember casting external variables to desired types by std.parseInt
, std.parseJson
.
local lr = 0.1; // before
↓↓↓
local lr = std.parseJson(std.extVar('lr')); // after
For more information, please refer to AllenNLP Guide.
2.2. Define hyperparameter search speaces
You can define search space in Json.
Each hyperparameter config must have type
and keyword
.
You can see what parameters are available for each hyperparameter in
Optuna API reference.
[
{
"type": "int",
"attributes": {
"name": "embedding_dim",
"low": 64,
"high": 128
}
},
{
"type": "int",
"attributes": {
"name": "max_filter_size",
"low": 2,
"high": 5
}
},
{
"type": "int",
"attributes": {
"name": "num_filters",
"low": 64,
"high": 256
}
},
{
"type": "int",
"attributes": {
"name": "output_dim",
"low": 64,
"high": 256
}
},
{
"type": "float",
"attributes": {
"name": "dropout",
"low": 0.0,
"high": 0.5
}
},
{
"type": "float",
"attributes": {
"name": "lr",
"low": 5e-3,
"high": 5e-1,
"log": true
}
}
]
Parameters for suggest_#{type}
are available for config of type=#{type}
. (e.g. when type=float
,
you can see the available parameters in suggest_float
Please see the example in detail.
2.3. Optimize hyperparameters by allennlp cli
allennlp tune \
config/imdb_optuna.jsonnet \
config/hparams.json \
--serialization-dir result/hpo \
--study-name test
2.4. [Optional] Specify Optuna configurations
You can choose a pruner/sample implemented in Optuna. To specify a pruner/sampler, create a JSON config file
The example of optuna.json looks like:
{
"pruner": {
"type": "HyperbandPruner",
"attributes": {
"min_resource": 1,
"reduction_factor": 5
}
},
"sampler": {
"type": "TPESampler",
"attributes": {
"n_startup_trials": 5
}
}
}
And add a epoch callback to your configuration. (https://guide.allennlp.org/hyperparameter-optimization#6)
epoch_callbacks: [
{
type: 'optuna_pruner',
}
],
config/imdb_optuna.jsonnet
is a simple configuration for allennlp-optunaconfig/imdb_optuna_with_pruning.jsonnet
is a configuration using Optuna pruner (and TPEsampler)
$ diff config/imdb_optuna.jsonnet config/imdb_optuna_with_pruning.jsonnet
32d31
< datasets_for_vocab_creation: ['train'],
58a58,62
> epoch_callbacks: [
> {
> type: 'optuna_pruner',
> }
> ],
Then, you can use a pruning callback by running following:
allennlp tune \
config/imdb_optuna_with_pruning.jsonnet \
config/hparams.json \
--optuna-param-path config/optuna.json \
--serialization-dir result/hpo_with_optuna_config \
--study-name test_with_pruning
3. Get best hyperparameters
allennlp best-params \
--study-name test
4. Retrain a model with optimized hyperparameters
allennlp retrain \
config/imdb_optuna.jsonnet \
--serialization-dir retrain_result \
--study-name test
5. Hyperparameter optimization at scale!
you can run optimizations in parallel.
You can easily run distributed optimization by adding an option
--skip-if-exists
to allennlp tune
command.
allennlp tune \
config/imdb_optuna.jsonnet \
config/hparams.json \
--optuna-param-path config/optuna.json \
--serialization-dir result \
--study-name test \
--skip-if-exists
allennlp-optuna uses SQLite as a default storage for storing results. You can easily run distributed optimization over machines by using MySQL or PostgreSQL as a storage.
For example, if you want to use MySQL as a storage, the command should be like following:
allennlp tune \
config/imdb_optuna.jsonnet \
config/hparams.json \
--optuna-param-path config/optuna.json \
--serialization-dir result \
--study-name test \
--storage mysql://<user_name>:<passwd>@<db_host>/<db_name> \
--skip-if-exists
You can run the above command on each machine to run multi-node distributed optimization.
If you want to know about a mechanism of Optuna distributed optimization, please see the official documentation: https://optuna.readthedocs.io/en/latest/tutorial/10_key_features/004_distributed.html
Reference
- Cookpad Techlife (in Japanese): https://techlife.cookpad.com/entry/2020/11/06/110000
allennlp-optuna
is used for optimizing hyperparameter of NER model
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file allennlp_optuna-0.1.5.tar.gz
.
File metadata
- Download URL: allennlp_optuna-0.1.5.tar.gz
- Upload date:
- Size: 8.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.5 CPython/3.9.2 Darwin/19.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd77ceb737960d5dbde8b4f1c645900e4c3f1658ea76deba8394cad060708457 |
|
MD5 | 6778ee728927076fb8cd3373a4b2646b |
|
BLAKE2b-256 | 5de5bddacc81ad6a4d6679cc4a1425f31eaf3a623b02931bf829b76d23d0f31f |
File details
Details for the file allennlp_optuna-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: allennlp_optuna-0.1.5-py3-none-any.whl
- Upload date:
- Size: 8.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.5 CPython/3.9.2 Darwin/19.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 79cff511359bdd21d2749425657bbd2a7b15d16ce69db1d01321779db7aab1f7 |
|
MD5 | 7802b6e396aac46c02375176dd313097 |
|
BLAKE2b-256 | 343391019fe4dfad38c989d4e5e4d29e104bad963361aa3865eff462e2e34a78 |