Skip to main content

Alluxio Fsspec provides Alluxio filesystem spec implementation.

Project description

Alluxio FileSystem

This quickstart shows how you can use the FSSpec interface to connect to Alluxio. For more information on what to expect, please read the blog Accelerate data loading in large scale ML training with Ray and Alluxio.

Dependencies

A running Alluxio server with ETCD membership service

Alluxio version >= 309

Launch Alluxio clusters with the example configuration

# only one master, one worker are running in this example
alluxio.master.hostname=localhost
alluxio.worker.hostname=localhost

# Critical properties for this example
# UFS address (e.g., the src of data to cache), change it to your bucket
alluxio.dora.client.ufs.root=s3://example_bucket/datasets/
# storage dir
alluxio.worker.page.store.dirs=/tmp/page_ufs
# size of storage dir
alluxio.worker.page.store.sizes=10GB
# use etcd to keep consistent hashing ring
alluxio.worker.membership.manager.type=ETCD
# default etcd endpoint
alluxio.etcd.endpoints=http://localhost:2379
# number of vnodes per worker on the ring
alluxio.user.consistent.hash.virtual.node.count.per.worker=5

# Other optional settings, good to have
alluxio.job.batch.size=200
alluxio.master.journal.type=NOOP
alluxio.master.scheduler.initial.wait.time=10s
alluxio.network.netty.heartbeat.timeout=5min
alluxio.underfs.io.threads=50

Python Dependencies

Python in range of [3.8, 3.9, 3.10] ray >= 2.8.2 fsspec released after 2023.6

Install fsspec implementation for underlying data storage

Alluxio fsspec acts as a cache on top of an existing underlying data lake storage connection. The fsspec implementation corresponding to the underlying data lake storage needs to be installed. In the below Alluxio configuration example, Amazon S3 is the data lake storage where the dataset is read from.

To connect to an existing underlying storage, there are two requirements

  • Install the underlying storage fsspec
  • Set credentials for the underlying data lake storage

Example: Deploy S3 as the underlying data lake storage Install third-party S3 fsspec

pip install s3fs

Install alluxiofs

Directly install the latest published alluxiofs

pip install alluxiofs

[Optional] Install from the source code

git clone git@github.com:fsspec/alluxiofs.git
cd alluxiofs && python3 setup.py bdist_wheel && \
     pip3 install dist/alluxiofs-<alluxiofs_version>-py3-none-any.whl

Running a Hello World Example

Load the dataset

Load dataset using Alluxio CLI load command

bin/alluxio job load --path s3://example_bucket/datasets/ --submit

This will trigger a load job asynchronously with a job ID specified. You can wait until the load finishes or check the progress of this loading process using the following command:

bin/alluxio job load --path s3://example_bucket/datasets/ --progress

Create a AlluxioFS (backed by S3)

Create the Alluxio Filesystem with data backed in S3

import fsspec
from alluxiofs import AlluxioFileSystem

# Register Alluxio to fsspec
fsspec.register_implementation("alluxiofs", AlluxioFileSystem, clobber=True)

# Create Alluxio filesystem
alluxio_fs = fsspec.filesystem("alluxiofs", etcd_hosts="localhost", etcd_port=2379, target_protocol="s3")

Run Alluxio FileSystem operations

Similar to fsspec examples and alluxiofs examples. Note that all the read operations can only succeed if the parent folder has been loaded into Alluxio.

# list files
contents = alluxio_fs.ls("s3://apc999/datasets/nyc-taxi-csv/green-tripdata/", detail=True)

# Read files
with alluxio_fs.open("s3://apc999/datasets/nyc-taxi-csv/green-tripdata/green_tripdata_2021-01.csv", "rb") as f:
    data = f.read()

Running an example with Ray

import fsspec
import ray
from alluxiofs import AlluxioFileSystem

# Register the Alluxio fsspec implementation
fsspec.register_implementation("alluxiofs", AlluxioFileSystem, clobber=True)
alluxio_fs = fsspec.filesystem(
  "alluxiofs", etcd_hosts="localhost", target_protocol="s3"
)

# Pass the initialized Alluxio filesystem to Ray and read the NYC taxi ride data set
ds = ray.data.read_csv("s3://example_bucket/datasets/example.csv", filesystem=alluxio_fs)

# Get a count of the number of records in the single CSV file
ds.count()

# Display the schema derived from the CSV file header record
ds.schema()

# Display the header record
ds.take(1)

# Display the first data record
ds.take(2)

# Read multiple CSV files:
ds2 = ray.data.read_csv("s3://apc999/datasets/csv_dir/", filesystem=alluxio_fs)

# Get a count of the number of records in the twelve CSV files
ds2.count()

# End of Python example

Running examples with Pyarrow

import fsspec
from alluxiofs import AlluxioFileSystem

# Register the Alluxio fsspec implementation
fsspec.register_implementation("alluxiofs", AlluxioFileSystem, clobber=True)
alluxio_fs = fsspec.filesystem(
  "alluxiofs", etcd_hosts="localhost", target_protocol="s3"
)

# Example 1
# Pass the initialized Alluxio filesystem to Pyarrow and read the data set from the example parquet file
import pyarrow.dataset as ds
dataset = ds.dataset("s3://example_bucket/datasets/example.parquet", filesystem=alluxio_fs)

# Get a count of the number of records in the parquet file
dataset.count_rows()

# Display the schema derived from the parquet file header record
dataset.schema

# Display the first record
dataset.take(0)

# Example 2
# Create a python-based PyArrow filesystem using FsspecHandler
py_fs = PyFileSystem(FSSpecHandler(alluxio_file_system))

# Read the data by using the Pyarrow filesystem interface
with py_fs.open_input_file("s3://example_bucket/datasets/example.parquet") as f:
    alluxio_file_data = f.read()

# End of Python example

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

alluxiofs-1.0.3.tar.gz (40.1 kB view details)

Uploaded Source

Built Distribution

alluxiofs-1.0.3-py3-none-any.whl (46.4 kB view details)

Uploaded Python 3

File details

Details for the file alluxiofs-1.0.3.tar.gz.

File metadata

  • Download URL: alluxiofs-1.0.3.tar.gz
  • Upload date:
  • Size: 40.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.1

File hashes

Hashes for alluxiofs-1.0.3.tar.gz
Algorithm Hash digest
SHA256 d1f21972419b47e3cc245520a84df618d4b019a3517652f9a41e81260b530be2
MD5 9fc23d0b29f99bc105ed1e951e6e2dc7
BLAKE2b-256 d3b8d99a0de6119ecc4b530247f699d71f077578124392fa802f87f11cc77632

See more details on using hashes here.

File details

Details for the file alluxiofs-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: alluxiofs-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 46.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.1

File hashes

Hashes for alluxiofs-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f9793c5fbf2a54d9625d9a5b1c6b1dccf003ca91edfb962ea7dad9c1ce1a2b1d
MD5 a3cd5a6eb209de5d29bdbd5380b9ca1d
BLAKE2b-256 06686247f2b26df40de9b9fc1f3690f13c5a80158195b0fbee32ba8ef768baae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page