Classes for representing angles, and positions on a unit sphere.
Project description
The Angles module defines several classes for representing angles, and positions on a sphere. It also has several functions for performing common operations on angles, such as unit conversion, normalization, creating string representations and others.
The position of M100 reported by SIMBAD is “12 22 54.899 +15 49 20.57”. We can easily parse these coordinates as follows:
>>> from __future__ import print_function
>>> from angles import AngularPosition
>>> a = AngularPosition.from_hd("12 22 54.899 +15 49 20.57")
>>> a.alpha
3.24157813039
>>> a.delta
0.276152636198
>>> print(a.alpha)
+12HH 22MM 54.899SS
>>> print(a.delta)
+15DD 49MM 20.570SS
>>> a.alpha.hms.hms
(1, 12, 22, 54.899)
>>> a.delta.dms.dms
(1, 15, 49, 20.57)
>>> a.alpha.dms.dms
(1, 185, 43, 43.485)
>>> a.delta.hms.hms
(1, 1, 3, 17.371)
>>> a.alpha.r, a.alpha.d, a.alpha.h, a.alpha.arcs
(3.2415781303913653, 185.72874583333328, 12.381916388888886, 668623.4849999998)
>>> a.delta.r, a.delta.d, a.delta.h, a.delta.arcs
(0.27615263619797403, 15.822380555555556, 1.0548253703703705, 56960.57)
Installation
Use pip or easy_install:
$ pip install angles
or,
$ easy_install angles
Tests are in the file test_angles.py.
Examples
Some examples are given below. For more details see docstrings of functions and classes.
Unit conversion
Convert between radians, degrees, hours and arc-seconds.
>>> import math
>>> from angles import r2d, r2arcs, h2r, h2d, d2arcs
>>> r2d(math.pi)
180.0
>>> r2arcs(math.pi)
648000.0
>>> h2r(12.0)
3.141592653589793
>>> h2d(12.0)
180.0
>>> d2arcs(1.0)
3600.0
Normalizing angles
Normalize value between two limits using normalize.
>>> from angles import normalize
>>> normalize(-180, -180, 180)
-180.0
>>> normalize(180, -180, 180)
-180.0
>>> normalize(180, -180, 180, b=True)
180.0
>>> normalize(181,-180,180)
-179.0
>>> normalize(181, -180, 180, b=True)
179.0
>>> normalize(-180,0,360)
180.0
>>> normalize(36,0,24)
12.0
>>> normalize(368.5,-180,180)
8.5
>>> normalize(-100, -90, 90)
80.0
>>> normalize(-100, -90, 90, b=True)
-80.0
>>> normalize(100, -90, 90, b=True)
80.0
>>> normalize(181, -90, 90, b=True)
-1.0
>>> normalize(270, -90, 90, b=True)
-90.0
>>> normalize(271, -90, 90, b=True)
-89.0
Normalizing angles on a sphere
Simplify point on sphere to simplest representation using normalize_sphere.
>>> from angles import normalize_sphere
>>> normalize_sphere(180, 91)
(0.0, 89.0000000000001)
>>> normalize_sphere(180, -91)
(0.0, -89.0000000000001)
>>> normalize_sphere(0, 91)
(180.0, 89.0000000000001)
>>> normalize_sphere(0, -91)
(180.0, -89.0000000000001)
>>> normalize_sphere(120, 280)
(119.99999999999999, -80.00000000000003)
>>> normalize_sphere(375, 45) # 25 hours ,45 degrees
(14.999999999999966, 44.99999999999999)
>>> normalize_sphere(-375, -45)
(345.00000000000006, -44.99999999999999)
Sexagesimal representation
Convert decimal value into sexagesimal representation.
>>> from angles import deci2sexa
>>> deci2sexa(-11.2345678)
(-1, 11, 14, 4.444)
>>> deci2sexa(-11.2345678, pre=5)
(-1, 11, 14, 4.44408)
>>> deci2sexa(-11.2345678, pre=4)
(-1, 11, 14, 4.4441)
>>> deci2sexa(-11.2345678, pre=4, trunc=True)
(-1, 11, 14, 4.444)
>>> deci2sexa(-11.2345678, pre=1)
(-1, 11, 14, 4.4)
>>> deci2sexa(-11.2345678, pre=0)
(-1, 11, 14, 4.0)
>>> deci2sexa(-11.2345678, pre=-1)
(-1, 11, 14, 0.0)
>>> x = 23+59/60.0+59.99999/3600.0
>>> deci2sexa(x, pre=3, lower=0, upper=24)
(1, 24, 0, 0.0)
>>> deci2sexa(x, pre=3, lower=0, upper=24, upper_trim=True)
(1, 0, 0, 0.0)
>>> deci2sexa(x, pre=5, lower=0, upper=24, upper_trim=True)
(1, 23, 59, 59.99999)
Formatting angles
Format an angle into various string representations using fmt_angle.
>>> from angles import fmt_angle
>>> fmt_angle(12.348978659, pre=4, trunc=True)
'+12 20 56.3231'
>>> fmt_angle(12.348978659, pre=5)
'+12 20 56.32317'
>>> fmt_angle(12.348978659, s1='HH ', s2='MM ', s3='SS', pre=5)
'+12HH 20MM 56.32317SS'
>>> x = 23+59/60.0+59.99999/3600.0
>>> fmt_angle(x)
'+24 00 00.000'
>>> fmt_angle(x, lower=0, upper=24, upper_trim=True)
'+00 00 00.000'
>>> fmt_angle(x, pre=5)
'+23 59 59.99999'
>>> fmt_angle(-x, lower=0, upper=24, upper_trim=True)
'+00 00 00.000'
>>> fmt_angle(-x)
'-24 00 00.000'
Parsing sexagesimal strings
Parse a sexagesimal number from a string using phmsdms.
>>> from angles import phmsdms
>>> phmsdms("12") == {
... 'parts': [12.0, None, None],
... 'sign': 1,
... 'units': 'degrees',
... 'vals': [12.0, 0.0, 0.0]
... }
True
>>> phmsdms("12h") == {
... 'parts': [12.0, None, None],
... 'sign': 1,
... 'units': 'hours',
... 'vals': [12.0, 0.0, 0.0]
... }
True
>>> phmsdms("12d13m14.56") == {
... 'parts': [12.0, 13.0, 14.56],
... 'sign': 1,
... 'units': 'degrees',
... 'vals': [12.0, 13.0, 14.56]
... }
True
>>> phmsdms("12d14.56ss") == {
... 'parts': [12.0, None, 14.56],
... 'sign': 1,
... 'units': 'degrees',
... 'vals': [12.0, 0.0, 14.56]
... }
True
>>> phmsdms("14.56ss") == {
... 'parts': [None, None, 14.56],
... 'sign': 1,
... 'units': 'degrees',
... 'vals': [0.0, 0.0, 14.56]
... }
True
>>> phmsdms("12h13m12.4s") == {
... 'parts': [12.0, 13.0, 12.4],
... 'sign': 1,
... 'units': 'hours',
... 'vals': [12.0, 13.0, 12.4]
... }
True
>>> phmsdms("12:13:12.4s") == {
... 'parts': [12.0, 13.0, 12.4],
... 'sign': 1,
... 'units': 'degrees',
... 'vals': [12.0, 13.0, 12.4]
... }
True
Parse string containing angular position
Parse coordinates of a point on sphere using pposition.
>>> from angles import pposition
>>> ra, de = pposition("12 22 54.899 +15 49 20.57")
>>> ra
12.38191638888889
>>> de
15.822380555555556
>>> pposition("12 22 54.899 +15 49 20.57", details=True) # doctest: +SKIP
{'y': 15.822380555555556,
'x': 12.38191638888889,
'numvals': 6,
'raw_x': {
'vals': [12.0, 22.0, 54.899],
'units': 'degrees',
'parts': [12.0, 22.0, 54.899],
'sign': 1
},
'raw_y': {
'vals': [15.0, 49.0, 20.57],
'units': 'degrees',
'parts': [15.0, 49.0, 20.57],
'sign': 1
}
}
Separation angle along a great circle
Find angular separation along a great circle using sep. This function uses vectors to find the angle of separation.
>>> from angles import r2d, d2r, sep
>>> r2d(sep(0, 0, 0, d2r(90.0)))
90.0
>>> r2d(sep(0, d2r(45.0), 0, d2r(90.0)))
45.00000000000001
>>> r2d(sep(0, d2r(-45.0), 0, d2r(90.0)))
135.0
>>> r2d(sep(0, d2r(-90.0), 0, d2r(90.0)))
180.0
>>> r2d(sep(d2r(45.0), d2r(-90.0), d2r(45.0), d2r(90.0)))
180.0
>>> r2d(sep(0, 0, d2r(90.0), 0))
90.0
>>> r2d(sep(0, d2r(45.0), d2r(90.0), d2r(45.0)))
60.00000000000001
>>> import math
>>> 90.0 * math.cos(d2r(45.0)) # Distance along latitude circle.
63.63961030678928
Bearing between two points
Find bearing of one point with respect to another using bear. Like sep this function uses vectors.
>>> from angles import bear, r2d, d2r
>>> bear(0, 0, 0, -d2r(90.0))
3.141592653589793
>>> bear(0, -d2r(90.0), 0, 0)
0.0
>>> bear(0, -d2r(45.0), 0, 0)
0.0
>>> bear(0, -d2r(89.678), 0, 0)
0.0
>>> r2d(bear(d2r(45.0), d2r(45.0), d2r(46.0), d2r(45.0)))
89.64644212193384
>>> r2d(bear(d2r(45.0), d2r(45.0), d2r(44.0), d2r(45.0)))
-89.64644212193421
Angle class
Class for representing an angle, conversion between different units, generating string representations.
>>> from __future__ import print_function
>>> from angles import Angle
>>> a = Angle(sg="12h34m16.592849219")
>>> a.r, a.d, a.h, a.arcs # doctest: +NORMALIZE_WHITESPACE
(3.291152306055805, 188.56913687174583, 12.571275791449722, 678848.892738285)
>>> a.hms.sign, a.hms.hh, a.hms.mm, a.hms.ss
(1, 12, 34, 16.593)
>>> a.hms.hms
(1, 12, 34, 16.593)
>>> a.h
12.571275791449722
>>> a.dms.sign, a.dms.dd, a.dms.mm, a.dms.ss
(1, 188, 34, 8.893)
>>> a.dms.dms
(1, 188, 34, 8.893)
>>> a.d
188.56913687174583
>>> print(a.ounit)
hours
>>> print(a)
+12 34 16.593
>>> a.pre, a.trunc
(3, False)
>>> a.pre = 4
>>> print(a)
+12 34 16.5928
>>> a.pre = 3
>>> a.trunc = True
>>> print(a)
+12 34 16.592
>>> a.ounit = "degrees"
>>> print(a)
+188 34 08.892
>>> a.ounit = "radians"
>>> print(a) # doctest: +SKIP
3.29115230606
>>> a.ounit = "degrees"
>>> a.s1 = "DD "
>>> a.s2 = "MM "
>>> a.s3 = "SS"
>>> print(a)
+188DD 34MM 08.892SS
>>> a = Angle(r=10)
>>> a.d, a.h, a.r, a.arcs, a.ounit # doctest: +NORMALIZE_WHITESPACE
(572.9577951308232, 38.197186342054884, 10, 2062648.0624709637, 'radians')
>>> a.d = 10
>>> a.d, a.h, a.r, a.arcs, a.ounit # doctest: +NORMALIZE_WHITESPACE
(10.0, 0.6666666666666666, 0.17453292519943295, 36000.0, 'radians')
>>> a.dms.mm = 60
>>> a.d, a.h, a.r, a.arcs, a.ounit # doctest: +NORMALIZE_WHITESPACE
(11.0, 0.7333333333333333, 0.19198621771937624, 39600.0, 'radians')
>>> a.dms.dms = (1, 12, 10, 5.234)
>>> a.d, a.h, a.r, a.arcs, a.ounit # doctest: +NORMALIZE_WHITESPACE
(12.168120555555557, 0.8112080370370371, 0.21237376747404604,
43805.234000000004, 'radians')
>>> a.hms.hms = (1, 1, 1, 1)
>>> a.d, a.h, a.r, a.arcs, a.ounit # doctest: +NORMALIZE_WHITESPACE
(15.254166666666668, 1.0169444444444444, 0.2662354329813017,
54915.00000000001, 'radians')
>>> print(a) # doctest: +SKIP
0.266235432981
>>> a.ounit = 'hours'
>>> print(a)
+01 01 01.000
>>> a.ounit = 'degrees'
>>> print(a)
+15 15 15.000
Class for longitudinal angles
A subclass of Angle that is normalized to the range [0, 24), i.e., a Right Ascension like angle. The ounit attribute is always “hours”.
>>> from __future__ import print_function
>>> from angles import AlphaAngle
>>> a = AlphaAngle(d=180.5)
>>> print(a)
+12HH 02MM 00.000SS
>>> a = AlphaAngle(h=12.0)
>>> print(a)
+12HH 00MM 00.000SS
>>> a = AlphaAngle(h=-12.0)
>>> a = AlphaAngle("12h14m23.4s")
>>> print(a)
+12HH 14MM 23.400SS
>>> a.r, a.d, a.h, a.arcs
(3.204380873430289, 183.5975, 12.239833333333333, 660951.0)
>>> a = AlphaAngle(h=12.54678345)
>>> a.hms.hms
(1, 12, 32, 48.42)
>>> a.hms.sign, a.hms.hh, a.hms.mm, a.hms.ss
(1, 12, 32, 48.42)
>>> print(a)
+12HH 32MM 48.420SS
>>> a.pre = 5
>>> a.hms.hms
(1, 12, 32, 48.42042)
>>> print(a)
+12HH 32MM 48.42042SS
>>> a.s1 = " : "
>>> a.s2 = " : "
>>> a.s3 = ""
>>> print(a)
+12 : 32 : 48.42042
>>> a.pre = 3
>>> a.dms.dms
(1, 188, 12, 6.306)
>>> a = AlphaAngle(h=25.0)
>>> print(a)
+01HH 00MM 00.000SS
>>> a = AlphaAngle(h=-1.0)
>>> print(a)
+23HH 00MM 00.000SS
>>> a.hms.hh = 23
>>> a.hms.mm = 59
>>> a.hms.ss = 59.99999
>>> a.hms.hms
(1, 0, 0, 0.0)
>>> print(a)
+00HH 00MM 00.000SS
>>> a.pre = 5
>>> a.hms.hms
(1, 23, 59, 59.99999)
>>> print(a)
+23HH 59MM 59.99999SS
Class for latitudinal angles
A subclass of Angle that is normalized to the range [-90, 90], i.e., a Declination like angle. The ounit attribute is always “degrees”.
>>> from __future__ import print_function
>>> from angles import DeltaAngle
>>> a = DeltaAngle(d=-45.0)
>>> print(a)
-45DD 00MM 00.000SS
>>> a = DeltaAngle(d=180.0)
>>> print(a)
+00DD 00MM 00.000SS
>>> a = DeltaAngle(h=12.0)
>>> print(a)
+00DD 00MM 00.000SS
>>> a = DeltaAngle(sg="91d")
>>> print(a)
+89DD 00MM 00.000SS
>>> a = DeltaAngle("12d23m14.2s")
>>> print(a)
+12DD 23MM 14.200SS
>>> a.r, a.d, a.h, a.arcs
(0.2161987825813487, 12.387277777777777, 0.8258185185185185, 44594.2)
>>> a = DeltaAngle(d=12.1987546)
>>> a.dms.dms
(1, 12, 11, 55.517)
>>> a.pre = 5
>>> a.dms.dms
(1, 12, 11, 55.51656)
>>> a.dms.dd, a.dms.mm, a.dms.ss
(12, 11, 55.51656)
>>> a.pre = 0
>>> a.dms.dms
(1, 12, 11, 56.0)
>>> a = DeltaAngle(d=12.3459876)
>>> a.s1 = " : "
>>> a.s2 = " : "
>>> a.s3 = ""
>>> print(a)
+12 : 20 : 45.555
>>> a = DeltaAngle(d=-91.0)
>>> print(a)
-89DD 00MM 00.000SS
>>> a = DeltaAngle(d=91.0)
>>> print(a)
+89DD 00MM 00.000SS
>>> a.dms.sign = 1
>>> a.dms.dd = 89
>>> a.dms.mm = 59
>>> a.dms.ss = 59.9999
>>> a.pre = 3
>>> print(a)
+90DD 00MM 00.000SS
>>> a.pre = 5
>>> print(a)
+89DD 59MM 59.99990SS
>>> a.dms.dms = (1, 0, 0, 0.0)
>>> a.dms.dd = 89
>>> a.dms.mm = 60
>>> a.dms.ss = 60
>>> a.pre = 3
>>> print(a)
+89DD 59MM 00.000SS
Class for points on a unit sphere
A class for representing a point on a sphere. The input angle values are normalized to get the simplest representation of the coordinates of the point.
>>> from __future__ import print_function
>>> from angles import AngularPosition, r2d
>>> a = AngularPosition.from_hd("12 22 54.899 +15 49 20.57")
>>> print(a)
+12HH 22MM 54.899SS +15DD 49MM 20.570SS
>>> a = AngularPosition.from_hd("12dd 22 54.899 +15 49 20.57")
>>> print(a)
+00HH 49MM 31.660SS +15DD 49MM 20.570SS
>>> a = AngularPosition.from_hd("12d 22 54.899 +15 49 20.57")
>>> print(a)
+00HH 49MM 31.660SS +15DD 49MM 20.570SS
>>> a = AngularPosition(alpha=165, delta=-91) # alpha should flip by 180 degrees
>>> round(a.alpha.d , 12), round(a.delta.d, 12)
(345.0, -89.0)
>>> a.delta.d = -91 # alpha should now do another 180 flip and come back to 165
>>> round(a.alpha.d, 12), round(a.delta.d, 12)
(165.0, -89.0)
>>> a.delta.d = 89 # there should be no change in normalized angles
>>> round(a.alpha.d, 12), round(a.delta.d, 12)
(165.0, 89.0)
>>> a.alpha.d = -180 # alpha should normalize to 180 delta shouldn't change
>>> round(a.alpha.d, 12), round(a.delta.d, 12)
(180.0, 89.0)
>>> pos1 = AngularPosition(alpha=12.0, delta=90.0)
>>> pos2 = AngularPosition(alpha=12.0, delta=0.0)
>>> r2d(pos2.bear(pos1))
0.0
>>> r2d(pos1.bear(pos2))
0.0
>>> r2d(pos1.sep(pos2))
90.0
>>> pos1.alpha.h = 0.0
>>> pos2.alpha.h = 0.0
>>> r2d(pos1.sep(pos2))
90.0
>>> r2d(pos2.bear(pos1))
0.0
>>> r2d(pos1.bear(pos2))
0.0
Credits
Some of the functions are adapted from the TPM C library by Jeffrey W. Percival.
License
Released under BSD; see LICENSE.txt.
For comments and suggestions, email to user prasanthhn in the gmail.com domain.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file angles-2.0.tar.gz
.
File metadata
- Download URL: angles-2.0.tar.gz
- Upload date:
- Size: 30.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7cd0b8c0b13065a98af80a30175470f55c5b09f4c33532729769d75c76e3198b |
|
MD5 | add19920bbb21ae98669ad444b52b416 |
|
BLAKE2b-256 | 01cfb32482b388c87bc8d5f0fde72488005babbd286bbf9a249b92c9444f6596 |