Skip to main content

A flask blueprint providing an API for accessing and searching an ElasticSearch index created from source datapackages

Project description

apies

Travis Coveralls PyPI - Python Version

apies is a flask blueprint providing an API for accessing and searching an ElasticSearch index created from source datapackages.

endpoints

/get

/search/count

`/search/

download/<doctypes>

Downloads search results in either csv, xls or xlsx format.

Query parameters that can be send:

  • types_formatted: The type of the documents to search
  • search_term: The Elastic search query
  • size: Number of hits to return
  • offset: Whether or not term offsets should be returned
  • filters: What offset to use for the pagination
  • dont_highlight:
  • from_date: If there should be a date range applied to the search, and from what date
  • to_date: If there should be a date range applied to the search, and until what date
  • order:
  • file_format: The format of the file to be returned, either 'csv', 'xls' or 'xlsx'. If not passed the file format will be xlsx
  • file_name: The name of the file to be returned, by default the name will be 'search_results'
  • column_mapping: If the columns should get a different name then in the original data, a column map can be send, for example:
{
  "עיר": "address.city",
  "תקציב": "details.budget"
}

For example, get a csv file with column mapping:

http://localhost:5000/api/download/jobs?q=engineering&size=2&file_format=csv&file_name=my_results&column_mapping={%22mispar%22:%22Job%20ID%22}

Or get an xslx file without column mapping:

http://localhost:5000/api/download/jobs?q=engineering&size=2&file_format=xlsx&file_name=my_results

configuration

Flask configuration for this blueprint:

    from apies import apies_blueprint
    import elasticsearch

    app.register_blueprint(
        apies_blueprint(['path/to/datapackage.json', Package(), ...],
                        elasticsearch.Elasticsearch(...), 
                        {'doc-type-1': 'index-for-doc-type-1', ...}, 
                        'index-for-documents',
                        dont_highlight=['fields', 'not.to', 'highlight'],
                        text_field_rules=lambda schema_field: [], # list of tuples: ('exact'/'inexact'/'natural', <field-name>)
                        multi_match_type='most_fields',
                        multi_match_operator='and'),
        url_prefix='/search/'
    )

local development

You can start a local development server by following these steps:

  1. Install Dependencies:

    a. Install Docker locally

    b. Install Python dependencies:

    $ pip install dataflows dataflows-elasticsearch
    $ pip install -e .
    
  2. Go to the sample/ directory

  3. Start ElasticSearch locally:

    $ ./start_elasticsearch.sh
    

    This script will wait and poll the server until it's up and running. You can test it yourself by running:

    $ curl -s http://localhost:9200
         {
         "name" : "99cd2db44924",
         "cluster_name" : "docker-cluster",
         "cluster_uuid" : "nF9fuwRyRYSzyQrcH9RCnA",
         "version" : {
             "number" : "7.4.2",
             "build_flavor" : "default",
             "build_type" : "docker",
             "build_hash" : "2f90bbf7b93631e52bafb59b3b049cb44ec25e96",
             "build_date" : "2019-10-28T20:40:44.881551Z",
             "build_snapshot" : false,
             "lucene_version" : "8.2.0",
             "minimum_wire_compatibility_version" : "6.8.0",
             "minimum_index_compatibility_version" : "6.0.0-beta1"
         },
         "tagline" : "You Know, for Search"
         }
    
  4. Load data into the database

    $ DATAFLOWS_ELASTICSEARCH=localhost:9200 python load_fixtures.py
    

    You can test that data was loaded:

    $ curl -s http://localhost:9200/jobs-job/_count?pretty
         {
         "count" : 1757,
         "_shards" : {
             "total" : 1,
             "successful" : 1,
             "skipped" : 0,
             "failed" : 0
         }
         }
    
  5. Start the sample server

    $ python server.py 
     * Serving Flask app "server" (lazy loading)
     * Environment: production
     WARNING: Do not use the development server in a production environment.
     Use a production WSGI server instead.
     * Debug mode: off
     * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
    
  6. Now you can hit the server's endpoints, for example:

         $ curl -s 'localhost:5000/api/search/jobs?q=engineering&size=2' | jq
         127.0.0.1 - - [26/Jun/2019 10:45:31] "GET /api/search/jobs?q=engineering&size=2 HTTP/1.1" 200 -
         {
             "search_counts": {
                 "_current": {
                 "total_overall": 617
                 }
             },
             "search_results": [
                 {
                 "score": 18.812,
                 "source": {
                     "# Of Positions": "5",
                     "Additional Information": "TO BE APPOINTED TO ANY CIVIL <em>ENGINEERING</em> POSITION IN BRIDGES, CANDIDATES MUST POSSESS ONE YEAR OF CIVIL <em>ENGINEERING</em> EXPERIENCE IN BRIDGE DESIGN, BRIDGE CONSTRUCTION, BRIDGE MAINTENANCE OR BRIDGE INSPECTION.",
                     "Agency": "DEPARTMENT OF TRANSPORTATION",
                     "Business Title": "Civil Engineer 2",
                     "Civil Service Title": "CIVIL ENGINEER",
                     "Division/Work Unit": "<em>Engineering</em> Review & Support",
             ...
         }
    

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

apies-1.1.10.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

apies-1.1.10-py2.py3-none-any.whl (14.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file apies-1.1.10.tar.gz.

File metadata

  • Download URL: apies-1.1.10.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.1

File hashes

Hashes for apies-1.1.10.tar.gz
Algorithm Hash digest
SHA256 dc3b52969f17affff99ff38ad0e965df8306783f54971ef29f033f3d280c3179
MD5 ab35ddc9414dc00527598a60a8777a7a
BLAKE2b-256 2253d2e759fe9b7e3cb8e6e196f6aa6ba5db55fdde0d9e35c8328db5160d11ce

See more details on using hashes here.

Provenance

File details

Details for the file apies-1.1.10-py2.py3-none-any.whl.

File metadata

  • Download URL: apies-1.1.10-py2.py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.1

File hashes

Hashes for apies-1.1.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 daebe561c8cb9da07bc08ea2a920fcbd923b157eeb6d68d34077ca739f17ede5
MD5 420989c93b72d813503aad6429266604
BLAKE2b-256 84359b87e7ae96b7db921a015ab1ca76421316ae2669a1a09493ba1fdd185427

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page