Skip to main content

Provides utility functions for accessing data repository for ARM data examples/notebooks

Project description

arm-test-data

CI PyPI Version Conda Version

A place to share atmospheric data with the community, shared throughout the Atmospheric Radiation Measurement user facility and beyond!

Sample data sets

These files are used as sample data in openradar examples/notebooks and are downloaded by arm-test-data package:

  • 201509021500.bi
  • AAFNAV_COR_20181104_R0.ict
  • NEON.D18.BARR.DP1.00002.001.000.010.001.SAAT_1min.2022-10.expanded.20221107T205629Z.csv
  • NEON.D18.BARR.DP1.00002.001.sensor_positions.20221107T205629Z.csv
  • NEON.D18.BARR.DP1.00002.001.variables.20221201T110553Z.csv
  • anltwr_mar19met.data
  • ayp22199.21m
  • ayp22200.00m
  • brw21001.dat
  • brw_12_2020_hour.dat
  • brw_CCl4_Day.dat
  • co2_brw_surface-insitu_1_ccgg_MonthlyData.txt
  • ctd21125.15w
  • ctd22187.00t.txt
  • enametC1.b1.20221109.000000.cdf
  • gucmetM1.b1.20230301.000000.cdf
  • list_of_files.txt
  • maraosmetM1.a1.20180201.000000.nc
  • marirtsstM1.b1.20190320.000000.nc
  • marnavM1.a1.20180201.000000.nc
  • met_brw_insitu_1_obop_hour_2020.txt
  • met_lcl.nc
  • mosaossp2M1.00.20191216.000601.raw.20191216000000.ini
  • mosaossp2M1.00.20191216.130601.raw.20191216x193.sp2b
  • mosaossp2auxM1.00.20191217.010801.raw.20191216000000.hk
  • nsacloudphaseC1.c1.20180601.000000.nc
  • nsasurfspecalb1mlawerC1.c1.20160609.080000.nc
  • sgp30ebbrE13.b1.20190601.000000.nc
  • sgp30ebbrE32.b1.20191125.000000.nc
  • sgp30ebbrE32.b1.20191130.000000.nc
  • sgp30ecorE14.b1.20190601.000000.cdf
  • sgpaerich1C1.b1.20190501.000342.nc
  • sgpaosacsmE13.b2.20230420.000109.nc
  • sgpaosccn2colaE13.b1.20170903.000000.nc
  • sgpbrsC1.b1.20190705.000000.cdf
  • sgpceilC1.b1.20190101.000000.nc
  • sgpco2flx4mC1.b1.20201007.001500.nc
  • sgpdlppiC1.b1.20191015.120023.cdf
  • sgpdlppiC1.b1.20191015.121506.cdf
  • sgpirt25m20sC1.a0.20190601.000000.cdf
  • sgpmetE13.b1.20190101.000000.cdf
  • sgpmetE13.b1.20190102.000000.cdf
  • sgpmetE13.b1.20190103.000000.cdf
  • sgpmetE13.b1.20190104.000000.cdf
  • sgpmetE13.b1.20190105.000000.cdf
  • sgpmetE13.b1.20190106.000000.cdf
  • sgpmetE13.b1.20190107.000000.cdf
  • sgpmetE13.b1.20190508.000000.cdf
  • sgpmetE13.b1.20210401.000000.csv
  • sgpmetE13.b1.yaml
  • sgpmetE15.b1.20190508.000000.cdf
  • sgpmetE31.b1.20190508.000000.cdf
  • sgpmetE32.b1.20190508.000000.cdf
  • sgpmetE33.b1.20190508.000000.cdf
  • sgpmetE34.b1.20190508.000000.cdf
  • sgpmetE35.b1.20190508.000000.cdf
  • sgpmetE36.b1.20190508.000000.cdf
  • sgpmetE37.b1.20190508.000000.cdf
  • sgpmetE38.b1.20190508.000000.cdf
  • sgpmetE39.b1.20190508.000000.cdf
  • sgpmetE40.b1.20190508.000000.cdf
  • sgpmetE9.b1.20190508.000000.cdf
  • sgpmet_no_time.nc
  • sgpmet_test_time.nc
  • sgpmfrsr7nchE11.b1.20210329.070000.nc
  • sgpmmcrC1.b1.1.cdf
  • sgpmmcrC1.b1.2.cdf
  • sgpmplpolfsC1.b1.20190502.000000.cdf
  • sgprlC1.a0.20160131.000000.nc
  • sgpsebsE14.b1.20190601.000000.cdf
  • sgpsirsE13.b1.20190101.000000.cdf
  • sgpsondewnpnC1.b1.20190101.053200.cdf
  • sgpstampE13.b1.20200101.000000.nc
  • sgpstampE31.b1.20200101.000000.nc
  • sgpstampE32.b1.20200101.000000.nc
  • sgpstampE33.b1.20200101.000000.nc
  • sgpstampE34.b1.20200101.000000.nc
  • sgpstampE9.b1.20200101.000000.nc
  • sodar.20230404.mnd
  • twpsondewnpnC3.b1.20060119.050300.custom.cdf
  • twpsondewnpnC3.b1.20060119.112000.custom.cdf
  • twpsondewnpnC3.b1.20060119.163300.custom.cdf
  • twpsondewnpnC3.b1.20060119.231600.custom.cdf
  • twpsondewnpnC3.b1.20060120.043800.custom.cdf
  • twpsondewnpnC3.b1.20060120.111900.custom.cdf
  • twpsondewnpnC3.b1.20060120.170800.custom.cdf
  • twpsondewnpnC3.b1.20060120.231500.custom.cdf
  • twpsondewnpnC3.b1.20060121.051500.custom.cdf
  • twpsondewnpnC3.b1.20060121.111600.custom.cdf
  • twpsondewnpnC3.b1.20060121.171600.custom.cdf
  • twpsondewnpnC3.b1.20060121.231600.custom.cdf
  • twpsondewnpnC3.b1.20060122.052600.custom.cdf
  • twpsondewnpnC3.b1.20060122.111500.custom.cdf
  • twpsondewnpnC3.b1.20060122.171800.custom.cdf
  • twpsondewnpnC3.b1.20060122.232600.custom.cdf
  • twpsondewnpnC3.b1.20060123.052500.custom.cdf
  • twpsondewnpnC3.b1.20060123.111700.custom.cdf
  • twpsondewnpnC3.b1.20060123.171600.custom.cdf
  • twpsondewnpnC3.b1.20060123.231500.custom.cdf
  • twpsondewnpnC3.b1.20060124.051500.custom.cdf
  • twpsondewnpnC3.b1.20060124.111800.custom.cdf
  • twpsondewnpnC3.b1.20060124.171700.custom.cdf
  • twpsondewnpnC3.b1.20060124.231500.custom.cdf
  • twpvisstgridirtemp.c1.20050705.002500.nc
  • vdis.b1

Adding new datasets

To add a new dataset file, please follow these steps:

  1. Add the dataset file to the data/ directory
  2. From the command line, run python make_registry.py script to update the registry file residing in arm-test-data/registry.txt
  3. Commit and push your changes to GitHub

Using datasets in notebooks and/or scripts

  • Ensure the arm-test-data package is installed in your environment

    python -m pip install arm-test-data
    
    # or
    
    python -m pip install git+https://github.com/ARM-DOE/arm-test-data
    
    # or
    
    conda install -c conda-forge arm-test-data
    
  • Import DATASETS and inspect the registry to find out which datasets are available

    In [1]: from arm_test_data import DATASETS
    
    In [2]: DATASETS.registry_files
    Out[2]: ['sample_file.nc`]
    
  • To fetch a data file of interest, use the .fetch method and provide the filename of the data file. This will

    • download and cache the file if it doesn't exist already.
    • retrieve and return the local path
    In [4]: filepath = DATASETS.fetch('sample_data.nc')
    
    In [5]: filepath
    Out[5]: '/Users/mgrover/Library/Caches/arm-test-data/sample_sgp_data.nc'
    
  • Once you have access to the local filepath, you can then use it to load your dataset into pandas or xarray or your package of choice:

    In [6]: radar = pyart.io.read(filepath)
    

Changing the default data cache location

The default cache location (where the data are saved on your local system) is dependent on the operating system. You can use the locate() method to identify it:

from arm_test_data import locate
locate()

The location can be overwritten by the ACT_TEST_DATA_DIR environment variable to the desired destination.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

arm-test-data-0.0.8.tar.gz (16.6 kB view details)

Uploaded Source

Built Distribution

arm_test_data-0.0.8-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file arm-test-data-0.0.8.tar.gz.

File metadata

  • Download URL: arm-test-data-0.0.8.tar.gz
  • Upload date:
  • Size: 16.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for arm-test-data-0.0.8.tar.gz
Algorithm Hash digest
SHA256 d6e71c7b5673733cc349e8edde909c757a7486b047ab373bc7c75e0d5e7e41f3
MD5 5a5e5fa306180513e3b1cbfdfcdc8751
BLAKE2b-256 73c1a3e35b6ce069b6533a8e1079933889d243fd8975b035570577a620a27a9e

See more details on using hashes here.

Provenance

File details

Details for the file arm_test_data-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for arm_test_data-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 8a256add459d852dd2244045d077dc875dba5bfe46981f4ac02d84a425c5f937
MD5 265861b3730c1f469eee00f7d90ed121
BLAKE2b-256 db197e8e69c318cc42bbaf65c83bfd147df15bd811cf4bb2e10dd888b914f6a0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page