Skip to main content

Affordable Databricks Workflows in Apache Airflow

Project description

Databricks Workflows in Airflow

The Astro Databricks Provider is an Apache Airflow provider to write Databricks Workflows using Airflow as the authoring interface. Running your Databricks notebooks as Databricks Workflows can result in a 75% cost reduction ($0.40/DBU for all-purpose compute, $0.07/DBU for Jobs compute).

While this is maintained by Astronomer, it's available to anyone using Airflow - you don't need to be an Astronomer customer to use it.

There are a few advantages to defining your Databricks Workflows in Airflow:

via Databricks via Airflow
Authoring interface Web-based via Databricks UI Code via Airflow DAG
Workflow compute pricing
Notebook code in source control
Workflow structure in source control
Retry from beginning
Retry single task
Task groups within Workflows
Trigger workflows from other DAGs
Workflow-level parameters

Example

The following Airflow DAG illustrates how to use the DatabricksTaskGroup and DatabricksNotebookOperator to define a Databricks Workflow in Airflow:

from pendulum import datetime

from airflow.decorators import dag, task_group
from airflow.operators.trigger_dagrun import TriggerDagRunOperator
from astro_databricks import DatabricksNotebookOperator, DatabricksWorkflowTaskGroup

# define your cluster spec - can have from 1 to many clusters
job_cluster_spec = [
   {
      "job_cluster_key": "astro_databricks",
      "new_cluster": {
         "cluster_name": "",
         # ...
      },
   }
]

@dag(start_date=datetime(2023, 1, 1), schedule_interval="@daily", catchup=False)
def databricks_workflow_example():
   # the task group is a context manager that will create a Databricks Workflow
   with DatabricksWorkflowTaskGroup(
      group_id="example_databricks_workflow",
      databricks_conn_id="databricks_default",
      job_clusters=job_cluster_spec,
      # you can specify common fields here that get shared to all notebooks
      notebook_packages=[
         { "pypi": { "package": "pandas" } },
      ],
      # notebook_params supports templating
      notebook_params={
         "start_time": "{{ ds }}",
      }
   ) as workflow:
      notebook_1 = DatabricksNotebookOperator(
         task_id="notebook_1",
         databricks_conn_id="databricks_default",
         notebook_path="/Shared/notebook_1",
         source="WORKSPACE",
         # job_cluster_key corresponds to the job_cluster_key in the job_cluster_spec
         job_cluster_key="astro_databricks",
         # you can add to packages & params at the task level
         notebook_packages=[
            { "pypi": { "package": "scikit-learn" } },
         ],
         notebook_params={
            "end_time": "{{ macros.ds_add(ds, 1) }}",
         }
      )

      # you can embed task groups for easier dependency management
      @task_group(group_id="inner_task_group")
      def inner_task_group():
         notebook_2 = DatabricksNotebookOperator(
            task_id="notebook_2",
            databricks_conn_id="databricks_default",
            notebook_path="/Shared/notebook_2",
            source="WORKSPACE",
            job_cluster_key="astro_databricks",
         )

         notebook_3 = DatabricksNotebookOperator(
            task_id="notebook_3",
            databricks_conn_id="databricks_default",
            notebook_path="/Shared/notebook_3",
            source="WORKSPACE",
            job_cluster_key="astro_databricks",
         )

      notebook_4 = DatabricksNotebookOperator(
         task_id="notebook_4",
         databricks_conn_id="databricks_default",
         notebook_path="/Shared/notebook_4",
         source="WORKSPACE",
         job_cluster_key="astro_databricks",
      )

      notebook_1 >> inner_task_group() >> notebook_4

   trigger_workflow_2 = TriggerDagRunOperator(
      task_id="trigger_workflow_2",
      trigger_dag_id="workflow_2",
      execution_date="{{ next_execution_date }}",
   )

   workflow >> trigger_workflow_2

databricks_workflow_example_dag = databricks_workflow_example()

Airflow UI

Airflow UI

Databricks UI

Databricks UI

Quickstart

Check out the following quickstart guides:

Documentation

The documentation is a work in progress--we aim to follow the Diátaxis system:

Changelog

Astro Databricks follows semantic versioning for releases. Read changelog to understand more about the changes introduced to each version.

Contribution guidelines

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

Read the Contribution Guidelines for a detailed overview on how to contribute.

Contributors and maintainers should abide by the Contributor Code of Conduct.

License

Apache Licence 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

astro_provider_databricks-0.1.4.tar.gz (2.2 MB view details)

Uploaded Source

Built Distribution

astro_provider_databricks-0.1.4-py3-none-any.whl (22.4 kB view details)

Uploaded Python 3

File details

Details for the file astro_provider_databricks-0.1.4.tar.gz.

File metadata

File hashes

Hashes for astro_provider_databricks-0.1.4.tar.gz
Algorithm Hash digest
SHA256 8b655730f307ba8d7b20e1d9db5ea5f3eb1fe58d5c54cee9dc1fc188963a94d8
MD5 cb95c07116892fc8f4090588b2c1db85
BLAKE2b-256 4ccc7626da24890a220994af763630b5c6635bca87ef9f54e6da372f9a14906b

See more details on using hashes here.

Provenance

File details

Details for the file astro_provider_databricks-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for astro_provider_databricks-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 cf1eab9e9d5bbe9a3d25077cd7d001d38fb2ca13f18a3930a9ee05d0d5e1ea06
MD5 e7c3c3d2c1ad278a8800f8c6219844d2
BLAKE2b-256 7f6636d7c4481794803b996dc5f2a053684ea2c40c71ea156770d052bf91538f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page