Skip to main content

Deploy models in ONNX format

Project description

Test status code coverage audonnx's documentation audonnx's supported Python versions audonnx's MIT license

audonnx deploys machine learning models stored in ONNX format.

Machine learning models can be trained in a variety of frameworks, e.g. scikit-learn, TensorFlow, Torch. To be independent of the training framework and its version models can be exported in ONNX format, which enables you to deploy and combine them easily.

audonnx allows you to name inputs and outputs of your model, and automatically loads the correct feature extraction from a YAML file stored with your model.

Have a look at the installation and usage instructions.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Version 0.6.3 (2023-01-03)

  • Added: support for Python 3.10

  • Changed: split API documentation into sub-pages for each function

Version 0.6.2 (2022-07-14)

  • Changed: require audobject>=0.7.2

Version 0.6.1 (2022-06-27)

  • Fixed: added missing onnx dependency to setup.cfg

Version 0.6.0 (2022-06-23)

  • Added: audonnx.Function

  • Added: audonnx.Model.labels()

  • Added: arguments concat, outputs, squeeze to audonnx.Model.__call__()

  • Added: tests on Windows

  • Added: audonnx.testing module

  • Changed: optionally init audonnx.Model from proto object instead of ONNX file

  • Changed: dynamic axis can be specified as None in ONNX graph

  • Changed: support output nodes where last dimension is dynamic

  • Deprecated: argument output_names of audonnx.Model.__call__()

Version 0.5.2 (2022-04-01)

  • Fixed: always replace dynamic axis names with -1 in input and output shapes of model nodes

Version 0.5.1 (2022-03-29)

  • Added: argument auto_install to audonnx.load()

Version 0.5.0 (2022-02-09)

  • Added: argument device

  • Changed: use CPU by default

  • Changed: require onnxruntime>=1.8.0

  • Removed: audonnx.Model.forward() audonnx.Model.labels, audonnx.Model.predict(), audonnx.Model.transform

Version 0.4.3 (2022-01-10)

  • Fixed: publication of docs failed

Version 0.4.2 (2022-01-10)

  • Fixed: publication of docs failed

Version 0.4.1 (2022-01-10)

  • Fixed: author email address in Python package metadata

Version 0.4.0 (2022-01-10)

  • Added: first public release

  • Changed: switch to MIT license

  • Changed: move repo to Github

  • Fixed: remove audsp from docstring example as we no longer depend on it

Version 0.3.3 (2021-12-30)

  • Changed: use Python 3.8 as default

Version 0.3.2 (2021-11-01)

  • Changed: use audobject >=0.6.1

Version 0.3.1 (2021-10-05)

  • Fixed: audonnx.load() try to load model from ONNX if YAML does not exist

Version 0.3.0 (2021-10-01)

  • Changed: audobject >=0.5.0

  • Changed: force .yaml extension when model is saved

  • Fixed: if possible load model from .yaml in audonnx.load()

Version 0.2.2 (2021-09-23)

  • Fixed: link to ONNX runtime CUDA mapping table

Version 0.2.1 (2021-09-15)

  • Fixed: loading of old models that contain a model.yaml file

Version 0.2.0 (2021-07-20)

  • Added: audonnx.InputNode, audonnx.Model.__call__(), audonnx.Model.inputs, audonnx.Model.outputs, audonnx.OutputNode

  • Changed: reshape input to expected shape

  • Changed: do not depend on existing models in tests and documentation

  • Changed: support multiple input nodes

  • Changed: make audonnx.Model serializable

  • Deprecated: audonnx.Model.forward() audonnx.Model.labels, audonnx.Model.predict(), audonnx.Model.transform

  • Removed: audonnx.Model.input_node, audonnx.Model.input_shape, audonnx.Model.input_type, audonnx.Model.output_nodes, audonnx.Model.output_shape, audonnx.Model.output_type,

Version 0.1.1 (2021-03-31)

  • Changed: update documentation how to select specific GPU device

Version 0.1.0 (2021-03-25)

  • Added: initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

audonnx-0.6.3.tar.gz (299.3 kB view details)

Uploaded Source

Built Distribution

audonnx-0.6.3-py3-none-any.whl (14.0 kB view details)

Uploaded Python 3

File details

Details for the file audonnx-0.6.3.tar.gz.

File metadata

  • Download URL: audonnx-0.6.3.tar.gz
  • Upload date:
  • Size: 299.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for audonnx-0.6.3.tar.gz
Algorithm Hash digest
SHA256 9bbfbeff44acfa818d18071af787d3abb6441443177e73113dc9a643edac0a7c
MD5 bfa6cac6b7815f6e37558861dc40db23
BLAKE2b-256 35a6bf5b7d30bdc65661057636e3730fd1235b9dd886d6bc5aa68f3523355191

See more details on using hashes here.

File details

Details for the file audonnx-0.6.3-py3-none-any.whl.

File metadata

  • Download URL: audonnx-0.6.3-py3-none-any.whl
  • Upload date:
  • Size: 14.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for audonnx-0.6.3-py3-none-any.whl
Algorithm Hash digest
SHA256 fa766f41d32cfd1a12435befc9f70cad1410057c3df1f8f93721d1a4f9ca5898
MD5 3be4ce4b7ca03bb92ff8a62a5bcf19d1
BLAKE2b-256 340ceec68670bdb46573cd8d65d3bbb57cbb07ee79fee5331e2d26002cba8078

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page