No project description provided
Project description
Table of Contents
Introduction
Download and save daily papers.
Install
python -m pip install auto-paper -U
Usage
> python -m auto_paper --help
usage: auto_paper.py [-h] [--conf.src {arxiv,biorxiv,medrxiv}] [--conf.max-paper INT] [--conf.paper-db PATH] [--conf.pdf-dir PATH]
[--conf.query STR] [--conf.filters {all,new,today}] [--conf.sortby {Relevance,LastUpdatedDate,SubmittedDate}]
[--conf.filterby {updated,published}] [--conf.no-save-pdf] [--conf.no-show] [--url {None}|STR]
Run main function.
╭─ arguments ─────────────────────────────────────────────╮
│ -h, --help show this help message and exit │
│ --url {None}|STR (default: None) │
╰─────────────────────────────────────────────────────────╯
╭─ conf arguments ────────────────────────────────────────╮
│ Configuration. │
│ ─────────────────────────────────────────────────────── │
│ --conf.src {arxiv,biorxiv,medrxiv} │
│ (default: arxiv) │
│ --conf.max-paper INT (default: 100) │
│ --conf.paper-db PATH (default: papers.db) │
│ --conf.pdf-dir PATH (default: pdfs) │
│ --conf.query STR (default: cat:cs.AI) │
│ --conf.filters {all,new,today} │
│ (default: new) │
│ --conf.sortby {Relevance,LastUpdatedDate,SubmittedDate} │
│ (default: LastUpdatedDate) │
│ --conf.filterby {updated,published} │
│ (default: updated) │
│ --conf.no-save-pdf (sets: save_pdf=False) │
│ --conf.no-show (sets: show=False) │
╰─────────────────────────────────────────────────────────╯
Examples
Download the most recent 5 cat:cs.AI
papers in arxiv.
python -m auto_paper --conf.max-paper 5
Fetching http://arxiv.org/pdf/2304.01196v1
Fetching http://arxiv.org/pdf/2202.01752v3
Fetching http://arxiv.org/pdf/2304.01179v1
Fetching http://arxiv.org/pdf/2304.01195v1
Fetching http://arxiv.org/pdf/2304.01201v1
> ls pdfs
2202.01752v3.pdf 2304.01179v1.pdf 2304.01195v1.pdf 2304.01196v1.pdf 2304.01201v1.pdf
Download the most recent 5 math Algebraic Geometry category papers in arxiv.
python -m auto_paper --conf.max-paper 5 --conf.query cat:math.AG
Fetching http://arxiv.org/pdf/2111.11216v3
Fetching http://arxiv.org/pdf/2304.01135v1
Fetching http://arxiv.org/pdf/2304.01149v1
Fetching http://arxiv.org/pdf/2101.12186v3
Fetching http://arxiv.org/pdf/2303.15776v2
> ls
2101.12186v3.pdf 2202.01752v3.pdf 2304.01135v1.pdf 2304.01179v1.pdf 2304.01196v1.pdf
2111.11216v3.pdf 2303.15776v2.pdf 2304.01149v1.pdf 2304.01195v1.pdf 2304.01201v1.pdf
Download the most recent 2 papers in biorxiv.
python -m auto_paper --conf.max-paper 2 --conf.src biorxiv
Fetching https://www.biorxiv.org/content/10.1101/2021.01.11.426044.full.pdf
Fetching https://www.biorxiv.org/content/10.1101/2020.12.16.423137.full.pdf
> ls
10.1101.2020.12.16.423137.full.pdf 2111.11216v3.pdf 2304.01135v1.pdf 2304.01195v1.pdf
10.1101.2021.01.11.426044.full.pdf 2202.01752v3.pdf 2304.01149v1.pdf 2304.01196v1.pdf
2101.12186v3.pdf 2303.15776v2.pdf 2304.01179v1.pdf 2304.01201v1.pdf
Read DB.
import shelev
with shelve.open("papers.db") as db:
keys = list(db.keys())
print(keys)
# ['http://arxiv.org/abs/2202.01752v3',
# 'http://arxiv.org/abs/2304.01195v1',
# 'http://arxiv.org/abs/2304.01201v1',
# 'https://www.biorxiv.org/content/10.1101/2020.12.16.423137',
# 'http://arxiv.org/abs/2304.01196v1',
# 'https://www.biorxiv.org/content/10.1101/2021.01.11.426044',
# 'http://arxiv.org/abs/2111.11216v3',
# 'http://arxiv.org/abs/2304.01179v1',
# 'http://arxiv.org/abs/2303.15776v2',
# 'http://arxiv.org/abs/2304.01135v1',
# 'http://arxiv.org/abs/2304.01149v1',
# 'http://arxiv.org/abs/2101.12186v3']
print(db["http://arxiv.org/abs/2202.01752v3"])
# {
# 'pid': 'http://arxiv.org/abs/2202.01752v3',
# 'title': 'Near-Optimal Learning of Extensive-Form Games with Imperfect Information',
# 'abstract': 'This paper resolves the open question of designing near-optimal algorithms\nfor learning imperfect-information extensive-form games
# from bandit feedback.\nWe present the first line of algorithms that require only\n$\\widetilde{\\mathcal{O}}((XA+YB)/\\varepsilon^2)$ episodes of
# play to find an\n$\\varepsilon$-approximate Nash equilibrium in two-player zero-sum games, where\n$X,Y$ are the number of information sets and $A,B$
# are the number of actions\nfor the two players. This improves upon the best known sample complexity
# of\n$\\widetilde{\\mathcal{O}}((X^2A+Y^2B)/\\varepsilon^2)$ by a factor of\n$\\widetilde{\\mathcal{O}}(\\max\\{X, Y\\})$, and matches the
# information-theoretic\nlower bound up to logarithmic factors. We achieve this sample complexity by two\nnew algorithms: Balanced Online Mirror
# Descent, and Balanced Counterfactual\nRegret Minimization. Both algorithms rely on novel approaches of integrating\n\\emph{balanced exploration
# policies} into their classical counterparts. We also\nextend our results to learning Coarse Correlated Equilibria in multi-player\ngeneral-sum
# games.',
# 'published': '2022-02-03',
# 'updated': '2023-04-03',
# 'categorie': ('cs.LG', 'cs.AI', 'cs.GT', 'stat.ML')
# }
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
auto_paper-0.1.0.tar.gz
(6.3 kB
view details)
Built Distribution
File details
Details for the file auto_paper-0.1.0.tar.gz
.
File metadata
- Download URL: auto_paper-0.1.0.tar.gz
- Upload date:
- Size: 6.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d40e2862ea1f2441face2bcdeac4711cadf72b73f7e78c9553db56bb6eddccf5 |
|
MD5 | 1c1c30c80ccacf121bc5db18db97f954 |
|
BLAKE2b-256 | bc70814a4eb189364373e56d9f625f370320223299977a3fb2db0586aac41173 |
File details
Details for the file auto_paper-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: auto_paper-0.1.0-py3-none-any.whl
- Upload date:
- Size: 5.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa9e8d0a8a19e44a5f3cd2265ade2f09d0fb7c79c81e36074817898e432043a4 |
|
MD5 | 0dbb0be1cb1ccca808f5738edea7975d |
|
BLAKE2b-256 | 5c1f137d19aaab166431e652516dcd2d7b3bae71438fe933f38952979d96aab9 |