Skip to main content

No project description provided

Project description

Table of Contents

  1. Introduction
  2. Install
  3. Usage
    1. Examples
      1. Download the most recent 5 cat:cs.AI papers in arxiv.
      2. Download the most recent 5 math Algebraic Geometry category papers in arxiv.
      3. Download the most recent 2 papers in biorxiv.
      4. Read DB.

Introduction

Download and save daily papers.

Install

python -m pip install auto-paper -U

Usage

> python -m auto_paper --help

usage: auto_paper.py [-h] [--conf.src {arxiv,biorxiv,medrxiv}] [--conf.max-paper INT] [--conf.paper-db PATH] [--conf.pdf-dir PATH]
                     [--conf.query STR] [--conf.filters {all,new,today}] [--conf.sortby {Relevance,LastUpdatedDate,SubmittedDate}]
                     [--conf.filterby {updated,published}] [--conf.no-save-pdf] [--conf.no-show] [--url {None}|STR]

Run main function.

╭─ arguments ─────────────────────────────────────────────╮
│ -h, --help              show this help message and exit │
│ --url {None}|STR        (default: None)                 │
╰─────────────────────────────────────────────────────────╯
╭─ conf arguments ────────────────────────────────────────╮
│ Configuration.                                          │
│ ─────────────────────────────────────────────────────── │
│ --conf.src {arxiv,biorxiv,medrxiv}                      │
│                         (default: arxiv)                │
│ --conf.max-paper INT    (default: 100)                  │
│ --conf.paper-db PATH    (default: papers.db)            │
│ --conf.pdf-dir PATH     (default: pdfs)                 │
│ --conf.query STR        (default: cat:cs.AI)            │
│ --conf.filters {all,new,today}                          │
│                         (default: new)                  │
│ --conf.sortby {Relevance,LastUpdatedDate,SubmittedDate} │
│                         (default: LastUpdatedDate)      │
│ --conf.filterby {updated,published}                     │
│                         (default: updated)              │
│ --conf.no-save-pdf      (sets: save_pdf=False)          │
│ --conf.no-show          (sets: show=False)              │
╰─────────────────────────────────────────────────────────╯

Examples

Download the most recent 5 cat:cs.AI papers in arxiv.

python -m auto_paper --conf.max-paper 5

Fetching http://arxiv.org/pdf/2304.01196v1
Fetching http://arxiv.org/pdf/2202.01752v3
Fetching http://arxiv.org/pdf/2304.01179v1
Fetching http://arxiv.org/pdf/2304.01195v1
Fetching http://arxiv.org/pdf/2304.01201v1

> ls pdfs
2202.01752v3.pdf 2304.01179v1.pdf 2304.01195v1.pdf 2304.01196v1.pdf 2304.01201v1.pdf

Download the most recent 5 math Algebraic Geometry category papers in arxiv.

python -m auto_paper --conf.max-paper 5 --conf.query cat:math.AG

Fetching http://arxiv.org/pdf/2111.11216v3
Fetching http://arxiv.org/pdf/2304.01135v1
Fetching http://arxiv.org/pdf/2304.01149v1
Fetching http://arxiv.org/pdf/2101.12186v3
Fetching http://arxiv.org/pdf/2303.15776v2

> ls
2101.12186v3.pdf 2202.01752v3.pdf 2304.01135v1.pdf 2304.01179v1.pdf 2304.01196v1.pdf
2111.11216v3.pdf 2303.15776v2.pdf 2304.01149v1.pdf 2304.01195v1.pdf 2304.01201v1.pdf

Download the most recent 2 papers in biorxiv.

python -m auto_paper --conf.max-paper 2 --conf.src biorxiv

Fetching https://www.biorxiv.org/content/10.1101/2021.01.11.426044.full.pdf
Fetching https://www.biorxiv.org/content/10.1101/2020.12.16.423137.full.pdf

> ls
10.1101.2020.12.16.423137.full.pdf 2111.11216v3.pdf                   2304.01135v1.pdf                   2304.01195v1.pdf
10.1101.2021.01.11.426044.full.pdf 2202.01752v3.pdf                   2304.01149v1.pdf                   2304.01196v1.pdf
2101.12186v3.pdf                   2303.15776v2.pdf                   2304.01179v1.pdf                   2304.01201v1.pdf

Read DB.

import shelev

with shelve.open("papers.db") as db:
  keys = list(db.keys())

print(keys)
# ['http://arxiv.org/abs/2202.01752v3',
#  'http://arxiv.org/abs/2304.01195v1',
#  'http://arxiv.org/abs/2304.01201v1',
#  'https://www.biorxiv.org/content/10.1101/2020.12.16.423137',
#  'http://arxiv.org/abs/2304.01196v1',
#  'https://www.biorxiv.org/content/10.1101/2021.01.11.426044',
#  'http://arxiv.org/abs/2111.11216v3',
#  'http://arxiv.org/abs/2304.01179v1',
#  'http://arxiv.org/abs/2303.15776v2',
#  'http://arxiv.org/abs/2304.01135v1',
#  'http://arxiv.org/abs/2304.01149v1',
#  'http://arxiv.org/abs/2101.12186v3']

print(db["http://arxiv.org/abs/2202.01752v3"])
# {
#     'pid': 'http://arxiv.org/abs/2202.01752v3',
#     'title': 'Near-Optimal Learning of Extensive-Form Games with Imperfect Information',
#     'abstract': 'This paper resolves the open question of designing near-optimal algorithms\nfor learning imperfect-information extensive-form games
# from bandit feedback.\nWe present the first line of algorithms that require only\n$\\widetilde{\\mathcal{O}}((XA+YB)/\\varepsilon^2)$ episodes of
# play to find an\n$\\varepsilon$-approximate Nash equilibrium in two-player zero-sum games, where\n$X,Y$ are the number of information sets and $A,B$
# are the number of actions\nfor the two players. This improves upon the best known sample complexity
# of\n$\\widetilde{\\mathcal{O}}((X^2A+Y^2B)/\\varepsilon^2)$ by a factor of\n$\\widetilde{\\mathcal{O}}(\\max\\{X, Y\\})$, and matches the
# information-theoretic\nlower bound up to logarithmic factors. We achieve this sample complexity by two\nnew algorithms: Balanced Online Mirror
# Descent, and Balanced Counterfactual\nRegret Minimization. Both algorithms rely on novel approaches of integrating\n\\emph{balanced exploration
# policies} into their classical counterparts. We also\nextend our results to learning Coarse Correlated Equilibria in multi-player\ngeneral-sum
# games.',
#     'published': '2022-02-03',
#     'updated': '2023-04-03',
#     'categorie': ('cs.LG', 'cs.AI', 'cs.GT', 'stat.ML')
# }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

auto_paper-0.1.0.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

auto_paper-0.1.0-py3-none-any.whl (5.3 kB view details)

Uploaded Python 3

File details

Details for the file auto_paper-0.1.0.tar.gz.

File metadata

  • Download URL: auto_paper-0.1.0.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for auto_paper-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d40e2862ea1f2441face2bcdeac4711cadf72b73f7e78c9553db56bb6eddccf5
MD5 1c1c30c80ccacf121bc5db18db97f954
BLAKE2b-256 bc70814a4eb189364373e56d9f625f370320223299977a3fb2db0586aac41173

See more details on using hashes here.

File details

Details for the file auto_paper-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: auto_paper-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 5.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for auto_paper-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fa9e8d0a8a19e44a5f3cd2265ade2f09d0fb7c79c81e36074817898e432043a4
MD5 0dbb0be1cb1ccca808f5738edea7975d
BLAKE2b-256 5c1f137d19aaab166431e652516dcd2d7b3bae71438fe933f38952979d96aab9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page