Skip to main content

Manipulate arrays of complex data structures as easily as Numpy.

Project description

awkward-array

awkward-array is a pure Python+Numpy library for manipulating complex data structures as you would Numpy arrays. Even if your data structures

  • contain variable-length lists (jagged or ragged),

  • are deeply nested (record structure),

  • have different data types in the same list (heterogeneous),

  • are masked, bit-masked, or index-mapped (nullable),

  • contain cross-references or even cyclic references,

  • need to be Python class instances on demand,

  • are not defined at every point (sparse),

  • are not contiguous in memory,

  • should not be loaded into memory all at once (lazy),

this library can access them with the efficiency of Numpy arrays. They may be converted from JSON or Python data, loaded from “awkd” files, HDF5, Parquet, or ROOT files, or they may be views into memory buffers like Arrow.

Consider this monstrosity:

import awkward
array = awkward.fromiter([[1.1, 2.2, None, 3.3, None],
                          [4.4, [5.5]],
                          [{"x": 6, "y": {"z": 7}}, None, {"x": 8, "y": {"z": 9}}]
                         ])

It’s a list of lists; the first contains numbers and None, the second contains a sub-sub-list, and the third defines nested records. If we print this out, we see that it is called a JaggedArray:

array
# returns <JaggedArray [[1.1 2.2 None 3.3 None] [4.4 [5.5]] [<Row 0> None <Row 1>]] at 79093e598f98>

and we get the full Python structure back by calling array.tolist():

array.tolist()
# returns [[1.1, 2.2, None, 3.3, None],
#          [4.4, [5.5]],
#          [{'x': 6, 'y': {'z': 7}}, None, {'x': 8, 'y': {'z': 9}}]]

But we can also manipulate it as though it were a Numpy array. We can, for instance, take the first two elements of each sub-list (slicing the second dimension):

array[:, :2]
# returns <JaggedArray [[1.1 2.2] [4.4 [5.5]] [<Row 0> None]] at 79093e5ab080>

or the last two:

array[:, -2:]
# returns <JaggedArray [[3.3 None] [4.4 [5.5]] [None <Row 1>]] at 79093e5ab3c8>

Internally, the data has been rearranged into a columnar form, with all values at a given level of hierarchy in the same array. Numpy-like slicing, masking, and fancy indexing are translated into Numpy operations on these internal arrays: they are not implemented with Python for loops!

To see some of this structure, ask for the content of the array:

array.content
# returns <IndexedMaskedArray [1.1 2.2 None ... <Row 0> None <Row 1>] at 79093e598ef0>

Notice that the boundaries between sub-lists are gone: they exist only at the JaggedArray level. This IndexedMaskedArray level handles the None values in the data. If we dig further, we’ll find a UnionArray to handle the mixture of sub-lists and sub-sub-lists and record structures. If we dig deeply enough, we’ll find the numerical data:

array.content.content.contents[0]
# returns array([1.1, 2.2, 3.3, 4.4])
array.content.content.contents[1].content
# returns array([5.5])

Perhaps most importantly, Numpy’s universal functions (operations that apply to every element in an array) can be used on our array. This, too, goes straight to the columnar data and preserves structure.

array + 100
# returns <JaggedArray [[101.1 102.2 None 103.3 None]
#                       [104.4 [105.5]]
#                       [<Row 0> None <Row 1>]] at 724509ffe2e8>

(array + 100).tolist()
# returns [[101.1, 102.2, None, 103.3, None],
#          [104.4, [105.5]],
#          [{'x': 106, 'y': {'z': 107}}, None, {'x': 108, 'y': {'z': 109}}]]

numpy.sin(array)
# returns <JaggedArray [[0.8912073600614354 0.8084964038195901 None -0.1577456941432482 None]
#                       [-0.951602073889516 [-0.70554033]]
#                       [<Row 0> None <Row 1>]] at 70a40c3a61d0>

Rather than matching the speed of compiled code, this can exceed the speed of compiled code (on non-columnar data) because the operation may be vectorized on awkward-array’s underlying columnar arrays.

(To do: performance example to substantiate that claim.)

Installation

Install awkward like any other Python package:

pip install awkward                       # maybe with sudo or --user, or in virtualenv
pip install awkward-numba                 # optional: some methods accelerated by Numba

or install with conda:

conda config --add channels conda-forge   # if you haven't added conda-forge already
conda install awkward
conda install awkward-numba               # optional: some methods accelerated by Numba

The base awkward package requires only Numpy (1.13.1+), but awkward-numba additionally requires Numba.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

awkward-0.11.0rc4.tar.gz (222.4 kB view details)

Uploaded Source

Built Distribution

awkward-0.11.0rc4-py2.py3-none-any.whl (78.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file awkward-0.11.0rc4.tar.gz.

File metadata

  • Download URL: awkward-0.11.0rc4.tar.gz
  • Upload date:
  • Size: 222.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for awkward-0.11.0rc4.tar.gz
Algorithm Hash digest
SHA256 4fa16bb2f4e6ea0512b9ece2aa5c2c6acf318508743ba9c36fdd04d994d50ed8
MD5 69cac08fc27aef091de6bc87fc60419a
BLAKE2b-256 85239b4623d2b0f8e3e6028d95e38af7a89f47bcc8ae1ec6322cb8f1561ac653

See more details on using hashes here.

File details

Details for the file awkward-0.11.0rc4-py2.py3-none-any.whl.

File metadata

  • Download URL: awkward-0.11.0rc4-py2.py3-none-any.whl
  • Upload date:
  • Size: 78.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1

File hashes

Hashes for awkward-0.11.0rc4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ab04d387e170c1f192302e33cbdf3c480b2e0d02d8542ead7ff3e594d8004dd6
MD5 9553e1384bfe8fb7803c1dc2727d99a2
BLAKE2b-256 6b3c4a29d0d0e0231b37786715229cb34c9db54abe9e87a8b3fde85e5d9b07b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page