Skip to main content

Manipulate JSON-like data with NumPy-like idioms.

Project description

PyPI version Conda-Forge Python 3.7‒3.11 BSD-3 Clause License Continuous integration tests

Scikit-HEP NSF-1836650 DOI Documentation Gitter

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed types, and missing data, using NumPy-like idioms.

Arrays are dynamically typed, but operations on them are compiled and fast. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.

Motivating example

Given an array of objects with x, y fields and variable-length nested lists like

array = ak.Array([
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
    [],
    [{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

the following slices out the y values, drops the first element from each inner list, and runs NumPy's np.square function on everything that is left:

output = np.square(array["y", ..., 1:])

The result is

[
    [[], [4], [4, 9]],
    [],
    [[4, 9, 16], [4, 9, 16, 25]]
]

The equivalent using only Python is

output = []
for sublist in array:
    tmp1 = []
    for record in sublist:
        tmp2 = []
        for number in record["y"][1:]:
            tmp2.append(np.square(number))
        tmp1.append(tmp2)
    output.append(tmp1)

Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.

For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),

  • the Awkward Array one-liner takes 4.6 seconds to run and uses 2.1 GB of memory,
  • the equivalent using Python lists and dicts takes 138 seconds to run and uses 22 GB of memory.

Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with Numba.

Our presentation at SciPy 2020 provides a good introduction, showing how to use these arrays in a real analysis.

Installation

Awkward Array can be installed from PyPI using pip:

pip install awkward

You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).

Awkward Array is also available using conda, which always installs a binary:

conda install -c conda-forge awkward

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:

conda config --add channels conda-forge
conda update --all

Getting help

How-to tutorials

Python API reference

C++ API reference

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

awkward-1.10.0.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

awkward-1.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.0-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

awkward-1.10.0-cp311-cp311-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

awkward-1.10.0-cp311-cp311-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

awkward-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

awkward-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

awkward-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

awkward-1.10.0-cp311-cp311-macosx_10_9_universal2.whl (21.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.0-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

awkward-1.10.0-cp310-cp310-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

awkward-1.10.0-cp310-cp310-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

awkward-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

awkward-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

awkward-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

awkward-1.10.0-cp310-cp310-macosx_10_9_universal2.whl (21.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.0-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

awkward-1.10.0-cp39-cp39-win32.whl (12.5 MB view details)

Uploaded CPython 3.9 Windows x86

awkward-1.10.0-cp39-cp39-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

awkward-1.10.0-cp39-cp39-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

awkward-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

awkward-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

awkward-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

awkward-1.10.0-cp39-cp39-macosx_10_9_universal2.whl (21.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.0-cp38-cp38-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

awkward-1.10.0-cp38-cp38-win32.whl (12.5 MB view details)

Uploaded CPython 3.8 Windows x86

awkward-1.10.0-cp38-cp38-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

awkward-1.10.0-cp38-cp38-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

awkward-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

awkward-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

awkward-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

awkward-1.10.0-cp38-cp38-macosx_10_9_universal2.whl (21.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.0-cp37-cp37m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

awkward-1.10.0-cp37-cp37m-win32.whl (12.5 MB view details)

Uploaded CPython 3.7m Windows x86

awkward-1.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

awkward-1.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl (11.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

awkward-1.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

awkward-1.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

awkward-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file awkward-1.10.0.tar.gz.

File metadata

  • Download URL: awkward-1.10.0.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0.tar.gz
Algorithm Hash digest
SHA256 1d89c7244e6184b35f4bce6bd08ff82eb2ef60be67f572923bc6aaee35dab544
MD5 2b18991c50c40a553917b72ffb23fe7c
BLAKE2b-256 8c96b492f04f6fa92b5e0259ee58484138e677e731956c0e30dbe9652ed56a53

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c783b993bfaca57e68bc4840135d1ef37baf6af3aa765db965570ef05367733b
MD5 d873ef31bfc1dc4d4f0efd1d8701f09d
BLAKE2b-256 965966296ede10b0094ba2574ceec6c88978c3542e842b06370b1708222d3337

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed21dc96c8f9e0db8a8c9ec933f3a6c8d8292c22d0bcce7dbc5fda6cf452c6d8
MD5 101fcf8bb306d60f683a7c93bc2930e7
BLAKE2b-256 7efca4d570e302b1cdda88311cb0e2908391aba0301e024e8f12f0edb8bb6633

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ff56c5a164d1ef49ba313179500c4567e2f1660bf5bf6f9b71d37dc35654a07
MD5 51230a2fbadc11cf2beb3f8cfe021c08
BLAKE2b-256 357065eff4b9731399b41149d31fecd5afed1f211d52c9c9c27378db30274249

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad7d5c29e1722a1587ce0fb040292189c33a168e75a2c8db7a475a26e7562b57
MD5 87801224660d756de2f9c40d666665ec
BLAKE2b-256 125cd0993f3c46de0602d6ac9eeec8aaa5c15f00075773d00a89c0e4c3b84a24

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c9bc9f894b673dbec69e23f1195b1da4d811a35296cf461bee3eab5eb343fd7f
MD5 7104290854ff288a9c670c707d281fc0
BLAKE2b-256 83b39e40c79b164ccde2d37590f91777b59330f27256498f2b50c1bd22645ddc

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7eca092b85f2862e8f07cd34554daae2dbe1445c3d601ae5fc454ca5b497529b
MD5 d4eead41f540a25a5ae2a23e21e58605
BLAKE2b-256 bbd583eaa5a8be03b23231456d95ce56814795d4fff80e5b96badca7d3a362c9

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dfb0a50295c424022d18a6acbefec44e331f3f07f9aad20c09a4178428ef0186
MD5 cd2eff3eeb2ba533af997894227b911f
BLAKE2b-256 1898f4a7c3a26974fab3e9ea210fa3f2b1ef7195df2a49d6ca682197cb82a5a2

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60f32fd36057c94c06cd0e5e4133942e184b74d07471066737418a310a5df940
MD5 a7f2b0285265bfeca6a72c2d89342546
BLAKE2b-256 0bb71cbf2c4136ecd5aa1c3f28bf66830826084c6a7419035e919ef626fa5a7f

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 42d221826c0cbe6bf9fb614dad504ab462cf07e061fbc44a3cf8ad0483b0af41
MD5 33aa542e5207953353a66fc02b0a7dd8
BLAKE2b-256 99542e6b01f142b129ebc72af500b32a679993d30f16daa9a0d6c368337a7fdc

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0494f09a631674c8ac747e08ee9fc9d1421b5f621758098d5d1b0a236b2a1838
MD5 b3bc05ce6ddb6409d54ed848dfe8e6f3
BLAKE2b-256 de2b8c60b6ca7f1b2228ec5fd77c98c708d0bb8150ed695439af19663c8c1626

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45eee7e51ab528f491ecd47e196930119e7ee3037b66d527a5c3a8d6636ff524
MD5 4ffb5f6f4f9e9cff32d84c62ca4607e2
BLAKE2b-256 6382ed6dc8f3a2092fbb4a32cb266e1ad1d95fa9d0c467a77065537780f08a74

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa670d060c6e757edb0ceed410727b472b99298f0d4b5642f2f8fe058edff81a
MD5 97448ddbcb2ef55f3e601bbdf828245c
BLAKE2b-256 702de435bd24bc1bba449354b9236092f46e372d94cf47510f73dff9ccaa7cc1

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 021b41b5f1a5fda68a6c1cf890b37130578a07dd825068c074de5c9733e99796
MD5 3cc1c9db7d479c1f4d4960f2075922ab
BLAKE2b-256 883c9453d21e9729542a94ffeed215c419be5b1396d45f7e8be5dd38aff83b41

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 09561c1d38f2922b40fc0efd7d238492e05ce931ae5d3be2eac3e413d8fa38b4
MD5 c20a1409fda7d1f9529cb49b2bcc35f7
BLAKE2b-256 0eb7beaf180eab41f83381d38ddc1750d6893b17f5438a67044e02a170125bcb

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 186bda174d046e20d3695c58c5d56eb493393e17126c2cafbb102627cd19ed79
MD5 81f6f56c1f303aa85a7e871484aca041
BLAKE2b-256 70e593bc395c9f65841dff2fa7ffbbe321fa1e591ad33f01704b14d55b0bc2e2

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d187c2460ff5e04fea6f7db60e809ce068826ba3313ae7c8535dbd2ebc31593b
MD5 181839066102000586a67632a7233734
BLAKE2b-256 6ee8ddac4088231f9d8555321d767986b17dc2056fa70a3b7dcbbe2e28a6d1cf

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9ce268c209f6e3ad9e61a8de52d1e02b64d5ed6c9a1cca6c9a228a47ba6f2c0
MD5 220818b614456a1a1e6b3c7c47d72d1e
BLAKE2b-256 e2c8706cd70049e7c74b0762cab02825f1a0eb4836a0138fbaae3c9d0c49526f

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9301362239128a028ed19b05e4e6dc5716f20cfd8a0484184aee9f7d67cb6489
MD5 a0d4d7606baabcce2c938476ecb9ead7
BLAKE2b-256 3ee209d7c0859eef4af51af425289f54f0627ed56a2cf462792f1921969dee27

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfa378918e9b3615e998fe8719855d368e8a2c5c1da03c83e395f4ddd0f4f71c
MD5 d032186cf9cbde505bcaa3fa71d804da
BLAKE2b-256 75627d6634ad37138c04ce7aba5f981e510204bd74bdc3ab5d9ba67aa1e0098a

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 38c7707777ffc01aec6d22f5892361f7efc6072345fac7e5cd4a381dbd05c68a
MD5 84109262bc117aff756529022371e2d0
BLAKE2b-256 c0bf670c1bf6b81e3a7a9a2254de1dcaa353ef19d574c7184481202e557248f6

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1b0025af9905cc3f2ed1019b7ced8fa4c6cbc3e5f452b24d000495b92ba8ebbe
MD5 08b99d7891a4915e3d186054e08366e4
BLAKE2b-256 a33cf6dfc53109992a88aa14dd8a686ecafffcf004d4e285d9adf6b35ad8653f

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: awkward-1.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b43c23b4c80d6d51c8af7f44c6c748e52b6f0d5fe2dd884abb3041a07bd273c5
MD5 c8dbd2917042667d761435b24090f367
BLAKE2b-256 44fb12e4f15f6eb14b1072de7d4e3142e8122475f82bbfb5f89aca847f42cae4

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6bd61de2d718c8ddcb7e02ab8cff96ccae1637fd101715a612e4d42845cf6206
MD5 0a10a86d23380aa9bd7b4f9006f91484
BLAKE2b-256 a30107eafe571de468966507256a293d47b1bcf2da4a154120eac8c7a070055d

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 85b694ed915ee10637cb981d79490482a901dc2010059def37c2831c3bed6511
MD5 65999b6d759a86ad035ce923664addbc
BLAKE2b-256 c7ad2001c4103468b88f8fd5067acb1aeb55c90bca9163bed9e5cbcdea9ece2a

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c59ad4c40ad0dec3e186834a40d7eabf7d900b428d402df7cb6aaa80b41250cc
MD5 12bcab489c5d6b1595ab6e4a54d008f0
BLAKE2b-256 5a283fecb1507a0986f7361bccf0d49a2ad26c37893ea5ec89380d7468a15083

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c923b69611b4da6484d7d57a910850eda9e18431d0258d39d19c0aa9ebff9088
MD5 f43c20a731da596878665b9c81b25886
BLAKE2b-256 91b2f1ab4baa0918fce9c1a274f38d03f008c4f3c606c216ac850c99b4b9ba4c

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd87c6bf702f47389dd02433ad93c55419ddf584aab5b0cc76b3599f6b368437
MD5 01d7b4f575438ddca3e86d7afc236562
BLAKE2b-256 2686fb2083921e42065ef9755ad913d3dcf4d3cb33b216a7376dd88eb5f81a2b

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 791d117830090a3f50796dc05d57379e1a834500390cf7a2196efc2e34145275
MD5 e8745fde1af0c522047c3c30c7e3d764
BLAKE2b-256 d9404655038f83b5552ea1fe1c376a10c140585f7c10114fec2cc4baec861030

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6c27f5b24a7b6162123d3ff9f1f22ff06f576dc20943a7e39e844d30ff0c8e57
MD5 ef51646474f4244ce8697285acee5df8
BLAKE2b-256 b4b13bc0986c6fcacab6c386004645f056d22d5a304e1b50392d9b5390ef8420

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: awkward-1.10.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f42894aa2114a2cc6575b7fe97f643fc956de4289b35b669fa608ccdae60e45c
MD5 d94dff988dd5f3170a13d24e0543392d
BLAKE2b-256 b09ce3b3b2679a5483cec9451dbeb96f8280dae852353d125873ac3d240df469

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c8674d688906a210d2141aac43466df73d0bae73a068bc94600a2c44c1b36650
MD5 4a37e96b53157ac1fe76133e48f2d17e
BLAKE2b-256 22b4b8a6f951bb584b25956f5ab668ac1d01469fd7f07b13035047fb9f93f922

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8f0694be5d427458814d48a0b75d84883a34a47ec9d81239e34e5fe5aa15ce0b
MD5 738354a25b49abbd3cdf08c39e5405a0
BLAKE2b-256 8b5d5a3749b3fd96fc832c099d274a261fbd4955b857330aab4048324e54a74d

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d278e9d2e26493c481badd1523212f69c19588e6c7b153f4fd131664c1356d7
MD5 5d259ccd04a6b66ff39913bc42d52a0c
BLAKE2b-256 0a01ee994df90f27750350d56ff0bf8196610989c0e29c4bbadcaba75893eb23

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a1a1443ac661e0249a08248637f1acd9ab06c7db3f2e5a906facc5aaeb217aab
MD5 d0407270a81202a94fb04c045d60c29d
BLAKE2b-256 440e7793aa3c76548e6886d1727b83aba5d44c619a5e50a00b261ffccbf96912

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0c54367359c3dd1183b54599617b31044d0523d5af73311228dcb44e230fd63f
MD5 204d0ad66df6ef15c18ce884e14b4bb2
BLAKE2b-256 35a225666d5db87110e4f4d67a6a4c17f60c7a2051b05e6ab568a45c7f2f35bf

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5699910e4150c3964d9e92f1abb3cecbe2fb7c3d16e0ebd1d1aaa99883d6fb05
MD5 f149d85b3f42e29bc08c3961065c6eee
BLAKE2b-256 67663b40ae3b69af0b6450b8ada046c90e10c69b9c2637d7cdc297cb6a575e1c

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7e5b2fbe18c025ee360cb6cf2f12859030421f6ac9198d15d084a514e28e4113
MD5 6dc0ca6e537cd8071f05d092395438b5
BLAKE2b-256 350f0e9592b05c48418eb56db091402615d672f0bd9c23977cbb41c8412872c7

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: awkward-1.10.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 41df6b6607bdb8ff54b3c3715641034fa9efb8021e23831049830ec85db21ab3
MD5 272bcfebae576fc13aad38fd82ca73b6
BLAKE2b-256 c9287322d3e2bb20be1c4f5471ed88bab365ca0ed9de70ce84e4213e99d3cdce

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d438e23565db8c722e6dbbd984042e320dea6fbfc50f905a28c2479096357045
MD5 32cb12e18068c38413257ece97eea02f
BLAKE2b-256 1272634fc6aa118e4f5f192c36cede705d89b88c6280540d2ad19d675befc6aa

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 319c6b90ce4905b3f08a7e19f526feb871169b10d9cfce77df7287b42da776d2
MD5 0f14ca4ec11e5c517ea8d8aee2f4dca7
BLAKE2b-256 9fc1985c8a598902fa43687e02683bc6c60c9ff33c57a49cf18246d012d2b4e5

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 023957c2bf35234bd142e885006f94b91616a7862519c71ce8c1546701f64e5f
MD5 013ed5fa7e475e90725bc5cbb807e52e
BLAKE2b-256 8ebb6ff832fd001d0763bec5e0da43ae9f7cc681fa74a9a16a876f52d260c533

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f779726349f3aa78cf50409ef0b8cf8c5a195a38de67142af3b5c6f679b69a4
MD5 14b8e8848114cd96f700d2152831e73a
BLAKE2b-256 bd601263d9b86326514c402ba41efc5c44e3ac5a429258982480f39743889cd4

See more details on using hashes here.

File details

Details for the file awkward-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d582a9749390860cf22b2e6e4dc5a0085f9411978635110e92671c0366f6a6f7
MD5 3470ab8f15b15eff5e8bee4aa2a52c5f
BLAKE2b-256 ddbbb706523c89554aa0c06fca9bb9cd601f91c0e9528bbb5e0f2926d4130bd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page