Skip to main content

Manipulate JSON-like data with NumPy-like idioms.

Project description

PyPI version Conda-Forge Python 3.7‒3.11 BSD-3 Clause License Continuous integration tests

Scikit-HEP NSF-1836650 DOI Documentation Gitter

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed types, and missing data, using NumPy-like idioms.

Arrays are dynamically typed, but operations on them are compiled and fast. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.

Motivating example

Given an array of objects with x, y fields and variable-length nested lists like

array = ak.Array([
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
    [],
    [{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

the following slices out the y values, drops the first element from each inner list, and runs NumPy's np.square function on everything that is left:

output = np.square(array["y", ..., 1:])

The result is

[
    [[], [4], [4, 9]],
    [],
    [[4, 9, 16], [4, 9, 16, 25]]
]

The equivalent using only Python is

output = []
for sublist in array:
    tmp1 = []
    for record in sublist:
        tmp2 = []
        for number in record["y"][1:]:
            tmp2.append(np.square(number))
        tmp1.append(tmp2)
    output.append(tmp1)

Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.

For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),

  • the Awkward Array one-liner takes 4.6 seconds to run and uses 2.1 GB of memory,
  • the equivalent using Python lists and dicts takes 138 seconds to run and uses 22 GB of memory.

Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with Numba.

Our presentation at SciPy 2020 provides a good introduction, showing how to use these arrays in a real analysis.

Installation

Awkward Array can be installed from PyPI using pip:

pip install awkward

You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).

Awkward Array is also available using conda, which always installs a binary:

conda install -c conda-forge awkward

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:

conda config --add channels conda-forge
conda update --all

Getting help

How-to tutorials

Python API reference

C++ API reference

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

awkward-1.10.3.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

awkward-1.10.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.3-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

awkward-1.10.3-cp311-cp311-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

awkward-1.10.3-cp311-cp311-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

awkward-1.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

awkward-1.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

awkward-1.10.3-cp311-cp311-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

awkward-1.10.3-cp311-cp311-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.3-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

awkward-1.10.3-cp310-cp310-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

awkward-1.10.3-cp310-cp310-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

awkward-1.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

awkward-1.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

awkward-1.10.3-cp310-cp310-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

awkward-1.10.3-cp310-cp310-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.3-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

awkward-1.10.3-cp39-cp39-win32.whl (12.5 MB view details)

Uploaded CPython 3.9 Windows x86

awkward-1.10.3-cp39-cp39-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

awkward-1.10.3-cp39-cp39-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

awkward-1.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

awkward-1.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

awkward-1.10.3-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

awkward-1.10.3-cp39-cp39-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.3-cp38-cp38-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

awkward-1.10.3-cp38-cp38-win32.whl (12.5 MB view details)

Uploaded CPython 3.8 Windows x86

awkward-1.10.3-cp38-cp38-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

awkward-1.10.3-cp38-cp38-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

awkward-1.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

awkward-1.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

awkward-1.10.3-cp38-cp38-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

awkward-1.10.3-cp38-cp38-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.3-cp37-cp37m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

awkward-1.10.3-cp37-cp37m-win32.whl (12.5 MB view details)

Uploaded CPython 3.7m Windows x86

awkward-1.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

awkward-1.10.3-cp37-cp37m-musllinux_1_1_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

awkward-1.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

awkward-1.10.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

awkward-1.10.3-cp37-cp37m-macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file awkward-1.10.3.tar.gz.

File metadata

  • Download URL: awkward-1.10.3.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3.tar.gz
Algorithm Hash digest
SHA256 7e669b1d29da300ed4c4f0d3a14119356037e7cfa8c3aa9d130bf1be6e38f03b
MD5 b221b72c7ca106dc466200073e988f64
BLAKE2b-256 ddd4d813843fbeb70177dd9bc32747c4658986db57e607597348e9b269f61229

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c777b60998f14c3e0587888fe1e9b61bc49ee48da6d9151b4a086946301701a7
MD5 39338d746ed32f54ceef71e16d5657ab
BLAKE2b-256 521caf7db2cf540a782033107f21f72d02ce22a6e58eb2faf91dfd552651192b

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1b6efa22eca89b3d684ef529800eb7da023e7a2d21cd2deb7846b09b8c4171b
MD5 9fe2e4347e6e921ba68838f0ff68624a
BLAKE2b-256 d6069cdf266a239cefcbb1c5906c96fa0489a4af7caa04898af08d8cf1274778

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6129be931921482fe79766568aa4a3038c7c91e13bdd7d609f387d35a9860371
MD5 d78e2edcdce1150a4618211d05912b53
BLAKE2b-256 e63438c1ea55641b794dd65a91fa9c910445316e42e3cc4a9b7c03f1fde8c185

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7d8a617b44bf9fd5320817908b964f0ae069028def1f62f896605383e217bc1
MD5 3497baeb9d9286e39dad1689eacfb3e4
BLAKE2b-256 76230668f329272e8ad4b228dd246c971b16ec4c41a71d8110a21f360f487630

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e8bc682842a9c2994c9270fc4ef12a4584d0851773b6e0c616f10462f634107
MD5 13aaf0d574c92ed7e27bee34b59ceac8
BLAKE2b-256 1800d0e450536971589f66beaa7e8cb8d95723515d682230280eea0414451e1e

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60e574b24b0791a1b2a85a853f0a15991b18cd09ff82636d2966328134a3e9d3
MD5 f467c3c91b9fc732718a652b3e48f4e5
BLAKE2b-256 c8a1e4a8205ec4c066f9132ff77bbdb05c1bef9b0ab045b32b79e91c5fcb152d

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b3e15bc7e23ca34cbb8e46209c17a2af23e1391488560e74dd49ee68d754e8f4
MD5 6c4d9b7e5d2e7c6f350925a4a99a1a48
BLAKE2b-256 5cd8db7f4c59c8c0c13a735e6c7d54fbf8823f94da75c5275db704ca922991a0

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d11181fc847318fd9b1ed1dfae2ae83d4cae23f54ab007a44cbed27949104c94
MD5 74bf9f4f88141180cb727ad81e764d94
BLAKE2b-256 631715952174318e7acabe40eae2590f3667642642fc2f44e5d9342ef76cacdd

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 42bb44adc954f4256dba44fcf6037cda5e840414c32dfb1c557f05b8aa0f2a6f
MD5 a268b31469cf148f66441870ad0f5fd2
BLAKE2b-256 87fc4a3073dbfbb3f0a8b2e4a3fe3420159290f4934b0fd152ae3e48bc09de91

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c48c1ca47039efded1d1665aba5dad06e08e9797160f9dc18dbd5abef8fe5c12
MD5 ca9b47196cbe163c2425aedcdc760a99
BLAKE2b-256 106f03307b2637c26dd767c018a645f405858a16d1feba64f4d9ca2d069ddaab

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2f9d28bd412b6871b5e41e9a4527d6849cd83e0a2b026f9f056d749d626d53f
MD5 67d8a4435cb1472619a80b3d1bd9bd18
BLAKE2b-256 d1f3c3ffc7e081d0e36b901fdc0c62fff00c44977710730254776922d1fac376

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df61001fa12397f007ea40fda3d932855ca7c4bc4fd8d2d952012e0597ca8433
MD5 381c1a66c4e1c48184bed9da014ceadd
BLAKE2b-256 80e9485cf8eb8ed5d5ff1ad0d37a875e74c37b5fd5f79569a41653188d2baf52

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bc539f5fc5aa3f4cbe3ff3e8b938456c5a955a55bbca891538ce05b48155f1d0
MD5 9084d731a54cd1c854301bbec5964617
BLAKE2b-256 0b246dcf45f35f0657b18e311adc8ab4b1bb4d59bae8fe33c926e58c82b27988

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 554e0f1ec9b73a7fdfe685a93f0562d8159437ede2da811a4a3ad4d053445441
MD5 fb5095a651d5e3c68c95a551a32cb5b0
BLAKE2b-256 2edeb048f41b670b3b3a4385f4a46e8425d3c901e8da2fec501d96a6ad0f674f

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 950d51c22f5e264877d6e95ad4a5bbfe3d33f6639c2206fbe22ad671a350018d
MD5 2ac83cd459bf4a15634a46aba9e9c632
BLAKE2b-256 5e135c3694bdf315888fe5fec518c839b1ed0064d528c05903fda44c49b32699

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 601636439f7a00bee0f44e0f89be18c9c2170ff53fb60bbaf5a0016d0c69d4ce
MD5 33de23d46e2ebe6fb46946d1ffe0b881
BLAKE2b-256 b5c99778e2b426405adbac24e7a86bbf2687acd0732f1f096aec5b2f32b2eca8

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b070d3f23607c20ed939f615a235cb80783676357d38ce33267561802bf0e5a8
MD5 522aaeb340107d02c3d2a47a3301b7ea
BLAKE2b-256 5707718d7e86f8f7f9f53d20be2c2b0e77349a7d36082dbf294c901ead080a25

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d265ed047339a12cf24ca3a3cb3dc322e958d40be8c43847e81481de2b1abb2
MD5 26d669da7ae038d0567e09ecc3801955
BLAKE2b-256 f05b7e0a816c872e7622efbf3a4b68538f55f674a4049ebeb10809a5985dafd3

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7ebf995fba349dba2a9b916f95bd1c9214be50153bd0218aac708c2f4b46301
MD5 6b0b1f587fb496bb8bbc5753c2b0d1b1
BLAKE2b-256 fd0c85af0619afd8c80677010f289c2f333e17eaa8806a8798ace27e001b1b3e

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 85220d054795f1bc1daff6bfd3e49beffc4c8f27d942860744e1509add43fcf4
MD5 7f1fe328ce7725614b68be5b4b76411a
BLAKE2b-256 10270a6eb4de457e5a4ec9d662e510d4296cac20f1ab79f0e5ca2da08941adab

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b3a83fc0313c7292298172f77b6896830114e820c619e4ee58f57101b49b31e6
MD5 b4da7ef33ed4ff0c3f70082c66c26f71
BLAKE2b-256 b71d02903b4d7fb448ad4e288472913eae31a3cfaccec17f1522e3142db20505

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: awkward-1.10.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ed0eb47fe764115b789c28298f00234f4cde079f5dceb12395f3eb69c738fe64
MD5 c690a15d6a8d494ffcaf229d76d35b93
BLAKE2b-256 a923067301ef3eddde8e8bbd78d92f905c268798e8f51044c8130dc463fbd7db

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8e48bbf882b18997a0e3137690ce378ffd175e0b76841def9d6b474f27eb0d4c
MD5 97a0d4d866436804e71b897f7e8e4815
BLAKE2b-256 da7d636114e064aa005286d0d7b3128addb601e96fb43a1b3c534fc3c3495d33

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 20567b1dd3bb3996e8fc67f41bfabe9e164574ec99374f7880107527ee839738
MD5 dffa7359ad15fd5e52d2871a4d7a4068
BLAKE2b-256 377e469a4d730bdeabbc68aee1927f28e35c78c0ff0d6ae7b59ca87b82cce883

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eabbeb880e5a5caf4bbf6dde8787bc576c4709d7cbcdf869b816baebba80b039
MD5 2bfdc0460785611279b38e293751f105
BLAKE2b-256 f20455fbe76c1a7dd5ce7924f02193dbc554ca8c6f6405ec2047080c941be5e0

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47b66e40bb717fe5a40b735ac91afbcc00b879667592dcc2b4cbc26fbacc8413
MD5 11574d027c21370bcd833831dab32334
BLAKE2b-256 9d45eb5b596903476f0f0ae2d68ef112f1f7b2dac5d86c29f590f539f04df065

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60dac0d5f77eafa14e23559287b17b8288491fba684dbdb4e2f809d72f852921
MD5 096d4dc2b53b9aa4a8b84688a10d0fdf
BLAKE2b-256 cdfd5ccb7f57f4726079b7e8e0c94f0c7cb941020bf67cc809ea3d59d2d20008

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0341e7805a0acd0b47f77d76505ae76cb5fce95435a8ec073ff493cc24b8e982
MD5 b5162251d1d75287e95732a8584e370d
BLAKE2b-256 2fe96f810ba2c859ef5b1860e751cc09c6651501917c2e782ce9414c9943519d

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e43486d3b250917054b98b8db41c5115765e0b47ec2a586c33f1848e721bc6b8
MD5 33e32a4646a6e67465530bb59dc55d8b
BLAKE2b-256 909c52fb320254be19e4275845970337461778b267766380ad13889e8d089b56

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: awkward-1.10.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c2055cda0c006c46ba790d1850e3866ab5d75f13dfb3999b965aec6453e7b8f8
MD5 00ca764b9d2013432b9a9379547e8025
BLAKE2b-256 2f48474d7d004c0212859898d00b82ef334511d4bf1137adeab12d2a8189fdae

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f402fd07ff279a9876bcb113f2c082fccbbf6f603a0f2ad9ee8c2f13187fb04d
MD5 56a8f38492badf8210ca68cc12668e65
BLAKE2b-256 cb592ace933a0a2feac66630912f4a9e434c868fe8a9eedf4db0e9239fe7073f

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d533592b6a964cecb72ab505cd28ae815deb8e5d43b3526448230e8e8f8bb33d
MD5 cb695d92764587631c3019a41f48d0f1
BLAKE2b-256 4bcedb940b864d9421f167a96ac37ad67829fbdc075b984f4efde9a4c2b400e9

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6dc3e7706be4e3e4a4c2e61ca6466f66a1a45fad4ea728ad1d77f52edbb82a67
MD5 2a50de66d20a309d3cfae6e1fcd12b7b
BLAKE2b-256 6cd066e19b7a856114aa824a215522e23b5f1b52c641c95485b19f440cda40ae

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 364c6b784c8d283b95fe382b00726d145a9a906ec2c43d3870ba0b8a0514f84c
MD5 3b9ef36064b961d3f79429c8805b7b1f
BLAKE2b-256 0dd37496f0f21463c1e5bf7e19c5666a2788b53947bf0fa631d11c900eccc17b

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19081baaf5fe587cf1d1fa58756a1f572ef66c5962f2fb8194c8461426643830
MD5 d5c8faae57332bbd0854f91d8c996cd8
BLAKE2b-256 b6d783d74f09f46af29894b6070ebb16e6d2255acc9522dbd998d9516298ffd5

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7c00589cac99cd46ec5507474c21d53c4e205b504426d52d3aed66f2ff545d38
MD5 3768ca3bfa6785c7f036e463acb94f95
BLAKE2b-256 48464bfa64e7902a8e9456a2f6b1c6191741256943993e0684f9c02e42cccaeb

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3d8eb01053c6833ea79bfee9ef003c27460e74b3975e48c19436b106d5f73ac7
MD5 e55b624372c3d1cfbceacd1eb3718061
BLAKE2b-256 90c73bbc0e06562c36e706c21bccc4540f0fab647a03696aaf3ec1a0c7882556

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: awkward-1.10.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6db076ee90afcfab6a8943807c819482d9e7c4d1d21ca3d05dfb5b8e1dd17005
MD5 3173acf5648f4b697803652d40f6d4b2
BLAKE2b-256 ff61ac989b66b45d93583882608753558acc54d6020a0b30c4c34a0590b09547

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 10f52b6768052fcd6c159ce997903bdcae9e793f082318bf8727c9226ed80f0d
MD5 6c11e470d2c1714314f64c72bfa18cfa
BLAKE2b-256 348c24663c9b6ed17ae1e862e56f5624026ffa69625b63d531829fe1a2ee982a

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7bc803ce359fd9bc64a05f951f5f084e34e4207bb4adc5ac63c7ca2772304644
MD5 cffaccec0fe004e58c704fc03f56b5fc
BLAKE2b-256 2d3983cd7686ed5cc61e89fa77a543d687e20935c5714f0f6c7572fc95e4c133

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c62215e0e711f9b1e95d4f7ed6295e81cc9b347fc655ea9a787685dbecc77c4
MD5 ff2aca2f53982f174f35da8bc044f75f
BLAKE2b-256 afcb47b5e8e9ffafb9d4ff3bcace3aef2834445db4f6770fa427cd944e0cea5b

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b83fc199e91b28bc630f63e8058dd32de746372fb60c05fe746ae377d36addb
MD5 0b825aebfce0aba8bdf99cbba766b779
BLAKE2b-256 05217d22b7c0d8b7222fe2940fef050c584cdd982b1076226e0b1a9735e6bf93

See more details on using hashes here.

File details

Details for the file awkward-1.10.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6da051d2e16cf28fb599ebb1636d5cd33bf1ce9f46835731101fa1f16f4a6993
MD5 f5309dac31e01fa0136c5afa50a54835
BLAKE2b-256 cc3610c9a8a789a45fd069d31d129ad5e16a255bb99e020ee6d008ff779bc10c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page