Skip to main content

Manipulate JSON-like data with NumPy-like idioms.

Project description

PyPI version Conda-Forge Python 3.7‒3.11 BSD-3 Clause License Continuous integration tests

Scikit-HEP NSF-1836650 DOI Documentation Gitter

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed types, and missing data, using NumPy-like idioms.

Arrays are dynamically typed, but operations on them are compiled and fast. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.

Motivating example

Given an array of objects with x, y fields and variable-length nested lists like

array = ak.Array([
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
    [],
    [{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

the following slices out the y values, drops the first element from each inner list, and runs NumPy's np.square function on everything that is left:

output = np.square(array["y", ..., 1:])

The result is

[
    [[], [4], [4, 9]],
    [],
    [[4, 9, 16], [4, 9, 16, 25]]
]

The equivalent using only Python is

output = []
for sublist in array:
    tmp1 = []
    for record in sublist:
        tmp2 = []
        for number in record["y"][1:]:
            tmp2.append(np.square(number))
        tmp1.append(tmp2)
    output.append(tmp1)

Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.

For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),

  • the Awkward Array one-liner takes 4.6 seconds to run and uses 2.1 GB of memory,
  • the equivalent using Python lists and dicts takes 138 seconds to run and uses 22 GB of memory.

Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with Numba.

Our presentation at SciPy 2020 provides a good introduction, showing how to use these arrays in a real analysis.

Installation

Awkward Array can be installed from PyPI using pip:

pip install awkward

You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).

Awkward Array is also available using conda, which always installs a binary:

conda install -c conda-forge awkward

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:

conda config --add channels conda-forge
conda update --all

Getting help

How-to tutorials

Python API reference

C++ API reference

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

awkward-1.10.4.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

awkward-1.10.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.4-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

awkward-1.10.4-cp311-cp311-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

awkward-1.10.4-cp311-cp311-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

awkward-1.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

awkward-1.10.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

awkward-1.10.4-cp311-cp311-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

awkward-1.10.4-cp311-cp311-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.4-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

awkward-1.10.4-cp310-cp310-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

awkward-1.10.4-cp310-cp310-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

awkward-1.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

awkward-1.10.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

awkward-1.10.4-cp310-cp310-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

awkward-1.10.4-cp310-cp310-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.4-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

awkward-1.10.4-cp39-cp39-win32.whl (12.5 MB view details)

Uploaded CPython 3.9 Windows x86

awkward-1.10.4-cp39-cp39-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

awkward-1.10.4-cp39-cp39-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

awkward-1.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

awkward-1.10.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

awkward-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

awkward-1.10.4-cp39-cp39-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.4-cp38-cp38-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

awkward-1.10.4-cp38-cp38-win32.whl (12.5 MB view details)

Uploaded CPython 3.8 Windows x86

awkward-1.10.4-cp38-cp38-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

awkward-1.10.4-cp38-cp38-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

awkward-1.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

awkward-1.10.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

awkward-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

awkward-1.10.4-cp38-cp38-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.4-cp37-cp37m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

awkward-1.10.4-cp37-cp37m-win32.whl (12.5 MB view details)

Uploaded CPython 3.7m Windows x86

awkward-1.10.4-cp37-cp37m-musllinux_1_1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

awkward-1.10.4-cp37-cp37m-musllinux_1_1_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

awkward-1.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

awkward-1.10.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

awkward-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file awkward-1.10.4.tar.gz.

File metadata

  • Download URL: awkward-1.10.4.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4.tar.gz
Algorithm Hash digest
SHA256 9385ab2238c260257e68b1232e84fc96fc0ce69af6ff76d38200e5cf66dc163f
MD5 a75701448ea3fd76d103cd6601da7099
BLAKE2b-256 050ec31ea5dd116b3d9fd881cae0ed13e389de77a7d8f72766b12e9ba5217a3c

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5786c8050fbbbe0fa51868f800a357f4dfbd0fa05a41d96ac6d33f98e8242be9
MD5 d1f1f0d7684d46b4fac26cab8b7c473a
BLAKE2b-256 fe38496ef57c0d61bc2c57732dad511da8a77ecf8d036c5dbc3f049325c1a187

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4890306333e6dec8cf6bb368553d8f8aedd1daa391133cd7b7a37847e691d862
MD5 308b34ca5cc1a01d74a34ca9710100ac
BLAKE2b-256 fe75f8b2fe0bd693d2bbc2ea2593145979e841684d38a86911a47bb281ca2806

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ce26f1834ce26f86369777322b4a2d60f6ad927a04005494d55a234fefb009d
MD5 b9d547b35a23bbda13683264c4b530f5
BLAKE2b-256 bf6aa48e4e289bcafadd5bdfba39e67ceff585033e6446483a6b2f64f04dfb13

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19387cf49e8a37bb9db6bcf9f4c86dd64e7df6da29144e6f551f03d2ea6069c7
MD5 9a23c97b54edfd4ce1f05cbe43bd8517
BLAKE2b-256 11421ec9d5724224e84dba0b79295fccb6d608b96b617e6eb382b3bd9914741b

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 789095fb7297653caf369e4b09dc532a2de53a2d023eb7ab65fe2b40ecf534ef
MD5 b4946047fe55eb331fef6759e4ad65e8
BLAKE2b-256 8cbc8088c06c578cbfc8f09761e68452d4bdaa29faadefa183cc09734da9d3c8

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 478e355537dc126fefced63f12ea33369ec189d411b7270f6517b42b3e0e7a5e
MD5 98acf52cfba3794c46267902f43c2132
BLAKE2b-256 a215baf6203a7cab4af736e481a101827a29a848e4c7749fb5d61a437e3fb129

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 85e6b82c4a6a5fd8ebda1aa3646b7538ec94e8720ecbae77fce8bb768e743253
MD5 3ec516adcb7942f19ce03b6daa6b8d11
BLAKE2b-256 fb6505ac5e3283d8a21996ed71bf72c46ad5095448448510c6c8470b3a77e772

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e8fdf0eb3630682e085b8b07bcb06d77ea3a49f5f6d4a8fb61e54ec08776a90a
MD5 231d7f8a57709676445d78ad0bcc2d84
BLAKE2b-256 aecb3b24ce59bf75eb4339b2220c8d2f2e9f6b2d5586fb34e73e72788b78ec6b

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e2191c34dbfe15de0c7371344510c03c2f053f41f951fbcb231e58b53ef2b270
MD5 71e9aeac1bdadcc5d0db8a7cddc525bc
BLAKE2b-256 4c5cee2b371306b318e3bd3e4e5ceada5bb1744696b8cfc2884844e920afae82

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0803e15432d0faec529c3b132786d09393d8ad7a5b479d5f9da8587cba8a680
MD5 220e0555353b9a9e5452fe1a257a9b68
BLAKE2b-256 1ba704750e6128874099e2308b1c91f3fed03d4cd5c1603a00fe96f93cee110d

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4804e97691476a7da6e1b053f2cae90c29552b5f64a3611e7a6ee698eec524ed
MD5 9ba38e80aaec43634e03f41465f271a5
BLAKE2b-256 3e85cd5a5e4c0a1f4f4ddec2026cd641c852b65f0a9b2699181cff8b17a9124d

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f49b6a53a04fcc0d7729f8e993ffe08fa99a4052b0092f00e24536ef67028a66
MD5 80924ed26249ecbb0d3e468ba9b3030c
BLAKE2b-256 4464236c501a5e6497ab1a772573603e2feacae0d0e982d48de4e5f82f58015d

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9a870fb4f4895e5bbe6b25a050a9deb179b96dfb7fe8fda3593bc9d82f089383
MD5 e91a214e5b37a1b1d5247e3d6eba5bbb
BLAKE2b-256 c6a055bb78633283665e23a4e87a4c098d3389f9fabaa141f72d486628cf5537

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a8010ecc7a4f92cba41fd35be54df0aeaa1a3d97bde23c036cac873895cb95a9
MD5 bfe4584907beb2f11ddd0a96a4585f05
BLAKE2b-256 0c124df52f7fb462ee28af734bc1f6cd7feaf96fa1911319ba478a57057a8075

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 67bcd1b8ed2653231b2b424ec15d96b44aaf8b7f31fdff2d84d7c5b232864715
MD5 31790f3970311b8c3efc2b54697b5e38
BLAKE2b-256 698737e795314e83efc3936738fc13045c8d7395957c6810e096737a5ef8d360

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0f96d4eb734529f384e56982b82a97a93486ebc24ea979e97b7ca8eaea960e32
MD5 2fca080cdfac44cc6acfda209a11b37f
BLAKE2b-256 38159183ee87b408d978be8c7d81704ae35a7f703085cd7582b592560f981312

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d68e9ccda25111c1e6ca9d8b1029e1b4f7c81fcb85aa40f3dd76a9d18224b63
MD5 8f3b7de2927980ee04ad58cf930cfb7c
BLAKE2b-256 a434d2788cdf48fb9718289b069d66d620a9e25deb91e458d4f6ed49c32d938d

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8ebf319ae04e8b2d72072341c0336f4e7abf993f26df7db3558d6c717313f670
MD5 862c68d309a660ba042eba1df6e8df62
BLAKE2b-256 3bf0a030e38e1d3cf62418d063a5ab628dc39994897f311d263a27ae3a1bedd0

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d229cdddafa4a086491c77bf149f1f95762170244ad2d3cb2a27f664c159d3d6
MD5 386b8ebfeed0f008c98c8321df7f8671
BLAKE2b-256 0bb0294c9917e602de8bcf0eec04e39e69f3824d613f9c81df7bb71ba8b48ee5

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f9f78ea5ef01e67be561b1237f30693f670a3197098292e25e9e8d29b62d19ba
MD5 dd244bb840c0a37d6797aab309e47886
BLAKE2b-256 326660b287fa2a21f25dbf13eb920b1e8bf2604817a4d758cdb2551ec72da6ec

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e66e9d8572ecde8137539eb4c36185b8c531412409402014853e6587282b4a5e
MD5 a134171962e34cb09df30a8a88cf7de6
BLAKE2b-256 3e26411cdf743a648f19435279bdb6210242938bbeeedbfcda096403d7a36e09

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: awkward-1.10.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 30fc381a9274d9c72a23a71a1dcfc7fd801db65ab5998e40540d5d30415aa44f
MD5 65504853d197172c54ca4aa49eeb735a
BLAKE2b-256 73ce4052f9b3cd5001f836c0b70cb260e920e1320523ee30834aeea5a9cc2519

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f316497b64f462edef5fe76915ba53b9ddfc1c04fe9ff26b55f4670caa1c8e1
MD5 3a5ef27f0b06775e7c7148b04a291294
BLAKE2b-256 b9ba2aa71cbf1344205a3797fb28e21fcf6538ae6ce7dcbed07178222ce346ef

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8566656ae1c6713748579cac36c8cea9362aa7cf5e9ee057843351057e0eada1
MD5 4e53a10cd159ce146f1e6cf081ac538b
BLAKE2b-256 d60659c13e97ed6e8ca88dac6c28269671589c6ccf7bfbf919424130a55a4dae

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea4103fa471b792fc2b78637b843d604ef8f5215295adf0e4ff75e7cc8d83cc9
MD5 0b094526b54e41c74a1902caceefe8c8
BLAKE2b-256 71433788218af6e3a5f96a7658fa63f1e2784983505a610b46cf90ce5517bf28

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf7fa42fba968281d9da831519cfbfd5f937b04ddf95747cad8efd54819a004d
MD5 0d73897d3821c15092300bbb6d248f37
BLAKE2b-256 1c824d3b60e8db1367603daa0c568c55f17a68cb8d01d12d5f0376f13a431e61

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a89670e2b7a66d4ade88555e4854a9d9a57098abc12d55576f0145e74c6b7ed
MD5 e9db49c78e7abe1df6fc2868953fcfef
BLAKE2b-256 5fc643ace3d654bfce53aa972e75c7ed603112e192fe84bf3a8406fcd60f6605

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 57abb52d8b9bcc7f20e731801f6ab7fade573344879d62bb1fddefa2d1600496
MD5 d20e6565766df461ec5b67709327739a
BLAKE2b-256 577174d719cea2e1e7dfc0796857e5ec4145a8d61afdf1f6c85d1109e0cb8cc6

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f51f99be8989bd754cdc8d3b21a1807240c28c53b4e3b147f5c5a0d8c7e92479
MD5 b5ad77eb73b83622056bd881786d34e1
BLAKE2b-256 def71f4223be82ce0fe879b81f55cbed1368d2a6d34231f769aa01661a102cc5

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: awkward-1.10.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6b67ae7a37b101b9ed0e679f48eb9ac4bf72df9345b8f18331e0fa8ceaf3bc3e
MD5 fef14f0dc734001498a63683242724ad
BLAKE2b-256 7aaee59d4346bbdeec222a8b6f5f6f9270c7b8433af67cdd7712af8f5f4fdde5

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6b58d94cf28494c8fcb2735174f86e12fa8d74ef4cefdd0d866284fcf1f309e7
MD5 61409109603ec3753602fcb83c229c97
BLAKE2b-256 cf0fb843b3cba5ab409f1df267f4369dca9d67a554b7b146766c112b02e3f849

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a814893ef585ab91b0038d7ba0d277c35dd4424dce9288645342435c6d7f442a
MD5 a9a954b7b78fcc8666f93f7d245c73ba
BLAKE2b-256 56a0ff999d3dc1bf4b5d4fdc601bbe3222c30194c250b3ebc0c21d4d196dfb3b

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93944add6bdba2ace518cefc983a119874cf2dc6ba6c0245567013407ff7fd73
MD5 a8d998e6d8591ed81f609284bd22d0f1
BLAKE2b-256 9c19bd1cd1aa6556a352cc646a7c6b53543cfbc98fd5f8f7dfe546963b5ac2e5

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b7ff61a57a68c3617d4202d1a7ccb38feff52b593fddd20a9b8113225ce7aab
MD5 10f5687761ff5eadcc408c876ac7dafc
BLAKE2b-256 94439ab8f4163d062756ec8cb08e69a509297381882a2c5f5af3c8b3ea87a39b

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11d21e2c3be785cc45956dcb6a868abecad849a39b634c2b3d4c5a33da633db2
MD5 466fab37f0992d488470aff75f29f223
BLAKE2b-256 2476b794dad485be71309a5ee3538885f112d529ee4512ea759add4ba17de8d5

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c836a4bac310cd804c1255e13cc887d418d457351bbd613c1c21217e85058612
MD5 951b89ebf1eef5b8a4d21f9794286f8b
BLAKE2b-256 4ccdeea3da9e9cd3b178ad00d57b946985a3bca90da3608a2274dee30e830774

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 128b255d086ca5b3dc3745a8cc941b83498f2417e535fbb8bf738f340b28640b
MD5 bd521a83e94eb4acd73b41c30de7fe1f
BLAKE2b-256 5e8a59dbd986745ddba85d2a76b708cd80c6660c556254e6a9678ef923ecd413

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: awkward-1.10.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 12.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 fd7baa8945a799062c7844f0cb84352d75012f26f62b5e9e49877d8b19d5109b
MD5 ed70e6f83d9491852ef6349c2bdb352d
BLAKE2b-256 0dccbc758f3c91a2f07db09a2e58dd0a273f8bfa5e24e9ad73ddb1b074c519cf

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0d488bbfcb859859e610d57868276e6c6ffdf8a5bcef0191a2e454eb28c98ce7
MD5 dc95764e7572365974de3043f570d2e4
BLAKE2b-256 53c7125b7dfd3c89151af2ca77713d293d4bc9ac33416560f28303851c13c356

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 27fd683e80f9442eca3d2204e6e16785467b865bc314ebed93d6f90c9e4bcf11
MD5 54135bf57e3cee0e3d6cc04457c90e9a
BLAKE2b-256 72854ae7489093ecd299d365a1c69738186704d8696acdafffba7ed225854119

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42cd52b775559e633147762e64b26429007d67f0e2e3e447eb9a9e0a9ce83431
MD5 9d9ebec3444ada288fd28e242b0a8020
BLAKE2b-256 dc9ec30b39ac9216ccc09bac482eaa8be2e286293fee78e8d4ecb17c2c1ab54e

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72837ba7507510c4eaa3e35550d02af7626b3eb541b73255b45fa182550312ed
MD5 c42830e1a50769adec44174cffb835be
BLAKE2b-256 644741f70af1510e0566a254297b53c0f29fbae9b6e56dfcd4e8549b994da94a

See more details on using hashes here.

File details

Details for the file awkward-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 15dec4bbb8e9525c1f6b73a5116e79981978a05625a791757ad4a5b453abc093
MD5 de4e395af55215ceb06ce1eff955ad39
BLAKE2b-256 ba8b37a26dfca6817df718363f7676891bdd97981672433dd8882d10e33c95bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page