Skip to main content

Manipulate JSON-like data with NumPy-like idioms.

Project description

PyPI version Conda-Forge Python 3.7‒3.11 BSD-3 Clause License Continuous integration tests

Scikit-HEP NSF-1836650 DOI Documentation Gitter

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed types, and missing data, using NumPy-like idioms.

Arrays are dynamically typed, but operations on them are compiled and fast. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.

Motivating example

Given an array of objects with x, y fields and variable-length nested lists like

array = ak.Array([
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
    [],
    [{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

the following slices out the y values, drops the first element from each inner list, and runs NumPy's np.square function on everything that is left:

output = np.square(array["y", ..., 1:])

The result is

[
    [[], [4], [4, 9]],
    [],
    [[4, 9, 16], [4, 9, 16, 25]]
]

The equivalent using only Python is

output = []
for sublist in array:
    tmp1 = []
    for record in sublist:
        tmp2 = []
        for number in record["y"][1:]:
            tmp2.append(np.square(number))
        tmp1.append(tmp2)
    output.append(tmp1)

Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.

For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),

  • the Awkward Array one-liner takes 4.6 seconds to run and uses 2.1 GB of memory,
  • the equivalent using Python lists and dicts takes 138 seconds to run and uses 22 GB of memory.

Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with Numba.

Our presentation at SciPy 2020 provides a good introduction, showing how to use these arrays in a real analysis.

Installation

Awkward Array can be installed from PyPI using pip:

pip install awkward

You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).

Awkward Array is also available using conda, which always installs a binary:

conda install -c conda-forge awkward

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:

conda config --add channels conda-forge
conda update --all

Getting help

How-to tutorials

Python API reference

C++ API reference

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

awkward-1.10.5.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

awkward-1.10.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

awkward-1.10.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

awkward-1.10.5-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

awkward-1.10.5-cp311-cp311-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

awkward-1.10.5-cp311-cp311-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

awkward-1.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

awkward-1.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

awkward-1.10.5-cp311-cp311-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

awkward-1.10.5-cp311-cp311-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.5-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

awkward-1.10.5-cp310-cp310-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

awkward-1.10.5-cp310-cp310-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

awkward-1.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

awkward-1.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

awkward-1.10.5-cp310-cp310-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

awkward-1.10.5-cp310-cp310-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.5-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

awkward-1.10.5-cp39-cp39-win32.whl (12.6 MB view details)

Uploaded CPython 3.9 Windows x86

awkward-1.10.5-cp39-cp39-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

awkward-1.10.5-cp39-cp39-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

awkward-1.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

awkward-1.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

awkward-1.10.5-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

awkward-1.10.5-cp39-cp39-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.5-cp38-cp38-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

awkward-1.10.5-cp38-cp38-win32.whl (12.6 MB view details)

Uploaded CPython 3.8 Windows x86

awkward-1.10.5-cp38-cp38-musllinux_1_1_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

awkward-1.10.5-cp38-cp38-musllinux_1_1_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

awkward-1.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

awkward-1.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

awkward-1.10.5-cp38-cp38-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

awkward-1.10.5-cp38-cp38-macosx_10_9_universal2.whl (22.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

awkward-1.10.5-cp37-cp37m-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

awkward-1.10.5-cp37-cp37m-win32.whl (12.6 MB view details)

Uploaded CPython 3.7m Windows x86

awkward-1.10.5-cp37-cp37m-musllinux_1_1_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

awkward-1.10.5-cp37-cp37m-musllinux_1_1_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

awkward-1.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

awkward-1.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

awkward-1.10.5-cp37-cp37m-macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file awkward-1.10.5.tar.gz.

File metadata

  • Download URL: awkward-1.10.5.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5.tar.gz
Algorithm Hash digest
SHA256 d5849850fdc1be00fd9b20b4420ab286517cf04427e0e0d20eca530dba568974
MD5 d576e3b0c0000b846d6c2c39f39c5724
BLAKE2b-256 2ddcc6a41110e8de267fd60dd793ae3a31fef3e69bb46282e9186c82a01e7f24

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 195c528041e1f6286153a6cc2a44be75354daaed54aedf20a1372c1d2f78ce0b
MD5 934e34c3ddcf4fe07dfbe5ecfb6ec746
BLAKE2b-256 139e4682ee66a621922c8f11accf00e70b96fe0b2c93c5c2c4ecff0ab495d920

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d14981cf6ede139c5ecffcd85f672a7c2c385934929ede8e36aaa9d4e36942f7
MD5 a2dc0cc5dee7a8619375eac5b6f7f225
BLAKE2b-256 af0cc8635da45487826c14e4db0b09cddc39b6251cff3a7f8f66b91fc98db375

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5993e95cc8eb458987dc98d281ab290babe49ccbe1a452ee06e8cfa30b83d1a
MD5 a0ae49ac374c3f0ee66227d325fab49a
BLAKE2b-256 11e2ee8cf866fedeebe014e64ecd037debfc4ecd1f51968b2b1d8b6d0b0b3165

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 147dfbd1598d2e55e3ddf0b248eabfeeaf44895134543a2b5fc848af7216402e
MD5 7d4e74a74acb0e3aca866b9a44adeb35
BLAKE2b-256 5e83d76fa9f194c7128a50196fe883886b20cbf2630a96447d8f2b59a86d4322

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70ec93a5992f4dcd2efa873ae96b62417d80dbc3cd16b103c681129bf2a11850
MD5 a6a8d4022cf6ecdf6ed37cf56fd20b9b
BLAKE2b-256 6191d21f8a07dbf12bcb262b01f72c17447995322f98448b642908fb282e1286

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1733b22281b90990455ee559e4f8a3319305966625d83bd16398d1ce0d9b7703
MD5 ff50058be0ac59ef7c2cc29a753bfdb6
BLAKE2b-256 66915fcbee4e2b3d7d06a4a23962492cf7e32f8d419c055478d7bf4e3622f1a9

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cbf3f1d32a494cfbabbd43dc00481d8003b137ee615caefcf88b07cd887f5909
MD5 f0a52397296e229ae079a19011455be4
BLAKE2b-256 f3f5bc4bf00ba1d0c1a2381b117e523c15c973226c5029e1ffbaa9c6be137dcf

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 80909b58f5a0c07372a98c5985db76c37b59f2dfa2c49392044dbac928e9a6fc
MD5 cb761f35470564b757eb0c07db400502
BLAKE2b-256 f8c4811a774c48e9b5c202ab2d2d227e94a9fb2624c9874064a982e21c944c04

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2bc4bf5c37e30454e29c7846a2531e186994e89aead6f2208bb951bb19e5bfde
MD5 f7699d94d83c767fa858d26fe26b65aa
BLAKE2b-256 87cd0844a24119dad06a6f481b8a58314eb1a58d071ce3f3bf0498f4f76cc52a

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e63c19f871dd5a11e2d93ef92fe432dc07ea95bee53e803fae57593b33390d60
MD5 6d0b9c182753646c32130395a6f407aa
BLAKE2b-256 2db58bc1cc09a68511e1196133bd8768dfe71ef5673fda78efd58d47dd685916

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e537f15c92f21d58034caf0489ff39b0ac0320b857c9be0b61e8524cef72a929
MD5 0b7274880edc9568fb5c31382055b7e2
BLAKE2b-256 9593136b9c94df168593e2cfa5673cfcb83a2f76a0a3a62b92f2c56ec033fc8b

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb15bc7c2c458bc07706c760a3d28ed91f1cd79336083b86c60807688f4e6cc2
MD5 fa47322ebcdfb63b3086bca697235ef6
BLAKE2b-256 1e0b921e0f5795efd5a776b4963d928e59ea9931a20a85ad8f14dbc51f5d5dd4

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2a108afb245a26f71d6d8ecbaac9ea633994ffe9408e34d4827a62e615eb0e33
MD5 54a2bbedf882b14dae571b9dda6a7c9a
BLAKE2b-256 39af662d17c0d3eba77897d0975efda4f413d8781128cd1fb3b93d0b44f5f8f7

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 548ef402282575a8b10925a467c63354bdfabb95b3fb8245bfc3a8efb20623a7
MD5 aab74e8fc1364d485841bb8360ca81b1
BLAKE2b-256 9cf98e85b267a40380600dbcdbf4ecd974cba20226dc700568401425768f7917

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5e54736ca1a8b1af3efe80bd2e61800c5fa2a413e8bc54add73cb6683fe2124d
MD5 04a6974fbb1e1b0daafd4ed7357c7bc6
BLAKE2b-256 5903ff16ea784e9399d1e2641887960a1a6624057ab8b129ba86c1aadadb2f7a

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fad1b47b07a1fa9358b2d6c112b09edc35262a3bfb07a609705e49e695cdd331
MD5 23d49a15288f51e9073ef6da37401ca1
BLAKE2b-256 4a87c9963603cf7f7748fc5fc25658cd601fa42f16cdaa1b6dd74738720614be

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 009d4cd1db3eae739889cde5f4f77642c971cdc9ad84ab38f4d0a93e6772d072
MD5 492d8c9c5d8321615091f7a20749e3fa
BLAKE2b-256 4d7e364a5a067005e5d9f67b4cc9009827d02389699ba0980e695987a521e467

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99a142ad1530545794dbfc7099e88e2daecba2de69c20a32c5321b0447ade724
MD5 98e64b0e46ff3c99f8eede318e8937c5
BLAKE2b-256 6d71d756d7446032782e077d8ca9526a9b43ee0075652c23d6b32e7b5dfa9731

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b982003830aa344c0a2e3a8e611191deb6fe5db826147765587539741794165e
MD5 139a1265428139af9d268906c3c1adc3
BLAKE2b-256 97984f56a10c692f30bd03c2d7ef3c959f5830a5b06346ac469e31062d5ece82

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5ea5314b2131fc93fc382dc582423a5558febee960d070fd14cad22eace8ad01
MD5 b7fcce449e98747a19ddb8f039e4a5a4
BLAKE2b-256 4a0df6e4a13784480fcc4ebe7f72f2e0024967a6c090e8425eec98e07b64d160

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2fb73ef82c4c9ae14a24fa71a8d54c52fd0500a9cc5a2ec696be5c3d1b06831c
MD5 b7ebc07ab40e8796ee21d40f5f46351f
BLAKE2b-256 b265911a0a1461de6b3c59376406be963e25444449919805b2397ea7d1838bb0

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: awkward-1.10.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e4303bed830d2f24acc9b86971375e765ae6888b2482f6da099f554faff8b85e
MD5 4f17748643abeecd021e0cd18f60ab9d
BLAKE2b-256 f533d09dc2c1db185d5811d0f657b271f85caf080f31a0145c272e78d8fad090

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6bfda9e79acae6bf7d810264a53b0215a122094f9fb3dbbfb445f2f56c8818da
MD5 9209f793857c7aa5e4e921dd8441aac9
BLAKE2b-256 46776a6e7ecda203472c96fa1064297e11dbdcbe30445db5da22a9af580b89e2

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8154e00550258dc3870dd23e50f4b9f5fb8f4d229d0cfe0d0e7a2a24c1b93d2e
MD5 33ad4fc0f803254fe529397f908b7457
BLAKE2b-256 eb84499a2c6e3872c4cd708598d315b4b6cc7954f3f4d7f071ee44dffa91a39f

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65dd2c7c7384f5ec087c66e5d65672758a0f93c3723e083cf9f8d3e6e8a5fb21
MD5 14587075850e091796879ac8b7c0fb8a
BLAKE2b-256 f8543170e02da5c9a94a0ae0454691c8c85642ab2064b96d818fb887dcaa9177

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd14d0a4d477e1c5ed61bfdda5b1405c724822614cf902bc5217d3369c9c1bb0
MD5 ce3d7b0d20ad916da5c07b696cd81c4d
BLAKE2b-256 89a89c67f4fd60d868c4c9ca983cbf64ddf81eb868c8444962f078fedd3a7aea

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87f8c7e3c4bbed47277633684dc250f20dc8e1d216eb3967a58613a83ab036c0
MD5 a0472de5b4b9b95b65481ca3ed0c2b8d
BLAKE2b-256 1e4a927bd540aaa3c0bdd0ae7fd1585db1340b12bf81591c10c53c247b6e8097

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4ece88afb737f904ff4c92f7bf5bdeccc62b74e08056505716221327db0ae839
MD5 3ef355d9ab0b937ade4986e9281c39d1
BLAKE2b-256 1ddd216b0269aa68a6263f512bb22d5260ed7a8cb4e672a949a0dd78cf3325d6

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 763f83218b41c8be5166933bb60e534bed3451764e89dfb10d61db2ae8d632eb
MD5 7c3ef282e8451b9f59f7a75ea7dfaee8
BLAKE2b-256 e3b617a3400d0701e7158a3f034f6d2d28867fcf032f6c0517dc3ab5bc2a0f3e

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: awkward-1.10.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f6df4ec8aacef2d77e4c42af0e5dba84a2cfb4aba54865f8a88f145b4719267a
MD5 bc679205e71533eb15badb0bcf1e49fc
BLAKE2b-256 a076793c80931e8be1254bcc1640c6694ab052c71fe74c4788ac6264d70099c6

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be8f8a88654c0181f9c9b3c1ebf868e11345505698b277c1f8aa221ad9c2b4bf
MD5 5a221590c74c1b3a2394c0ad3a5ef1c8
BLAKE2b-256 ff822acac6a86ab23ee0dd9735160ad7e97540aa31950bb961a8ff048f4f3f4d

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2523db0829f4061a95dcf88a9acba628a9539587219d2cc78a2ace0c5b234089
MD5 c535c72e74c31800462968ff6963e254
BLAKE2b-256 eb742328e6795e2e8e9fe6fa4f0eb092b0d3bac9aaeb164e7f8bf5f47e1adc50

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac1dbe1eeb9194641ba583df5b1cf58ca7d12f008a8bcf74d202e4f5a594148d
MD5 cb3f7b7fe7faa1e11728aa0121f5d873
BLAKE2b-256 a0c5931a24b9aa959323506927c20ec90d779e89b001d1543b7e44e2715ed8b8

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e8e3ec984ccd1a9c3a4b280807ad0fb2107e1ab72f0904550fc0cdfe2895e2e
MD5 13a6f9954843903c24f525b07fba7b48
BLAKE2b-256 99f930e5abb37fb215596caabb5ca223517951a039456dd7c72ca12f0ec5bda1

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 587f87e340c4de248c19b42937dd87261632d2e7956c7ad1f8aeb18cc812f99d
MD5 d3d7210b069c87f5b04a2b490673aaeb
BLAKE2b-256 c34e9c9caa1f65a2d0f06b3167b47d9ff7404f738d08d09626974468cde975ad

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d1b7aa03bd39ada243493eb96af04f5bc498c3a973f3b1d7d8a1376191769eb7
MD5 a5e77f8638a8fff1e1d804bc117a5306
BLAKE2b-256 3273e291eac1bb37bd0f46a8f7b9a9d548a206269b872791eb7198f900681ab9

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.10.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ad73ad1cde9d0d5ab32e9eb46fc1a6a09f320ecf2f0770ff3b6644e06d3ccc1e
MD5 8eff7c516c7a474893d339076db75362
BLAKE2b-256 29fae4bb09ac4e2063034c3187e306c4ac1cd0a4598a22bab58de57df5acae81

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: awkward-1.10.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 32a275103e406be094f9983227e3f0bf9abb3b801ea802945dc61df773ac846c
MD5 0306814cd15ef9a780ba53082349f52c
BLAKE2b-256 7043f811b2c768fe133577e105594e32e3d4243e0fc8972c7dbed82d1a19122d

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e342b5d76d41ed9aadb90ebcc32ef498e82c76fb651788d85bf11085d34346f
MD5 11149a43c51aa81ced5b0aa7a0a2dd49
BLAKE2b-256 501d7fa048ec6b267fd3b9c0145f63e3b2138976d0cd79ac02515f876e91bc7d

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 19f0e4d8c8469382ff063d2ff24fe99b3a2fe019410b75277665ba651bf668bd
MD5 9ee35e92c844113659e44f0072620737
BLAKE2b-256 5ede553e726d57231b91621d6132f221619d00e49d6a0b617a6954dcfe78d4e2

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 575fd83c1a8878ec29fe304797b95dfae2aa7b4adbf406cd3a4de41f7e23891a
MD5 0b93c6d58ed7764a94d4b788763fdb45
BLAKE2b-256 adb59b64426878ae3dfe7f54d552c71ca54fa65f40053b6dde4a313bcea9525c

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a377b84d351846a09f6fcd38ba942e64519f8b4c14774c50d5d0e275a41df76b
MD5 34320445099ca475aa2ed05d9c8415dd
BLAKE2b-256 49f34ef221388a11390e264366abd3d45fdd6cef5ac0aa82d426527b016ab489

See more details on using hashes here.

File details

Details for the file awkward-1.10.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.10.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d31ef9508dfab3580f6d8718062a4106d417d42e0eb39529f667cad8ef235f74
MD5 8615822901ec171bc452cdc6c2e99a45
BLAKE2b-256 9ba9fd9e91709f6e282e70ee48d7ec142f1afaa465e1575346194741caca87ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page