Skip to main content

Manipulate JSON-like data with NumPy-like idioms.

Project description

PyPI version Conda-Forge Python 2.7,3.5‒3.9 BSD-3 Clause License Continuous integration tests

Scikit-HEP NSF-1836650 DOI Documentation Gitter

Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed types, and missing data, using NumPy-like idioms.

Arrays are dynamically typed, but operations on them are compiled and fast. Their behavior coincides with NumPy when array dimensions are regular and generalizes when they're not.

Motivating example

Given an array of objects with x, y fields and variable-length nested lists like

array = ak.Array([
    [{"x": 1.1, "y": [1]}, {"x": 2.2, "y": [1, 2]}, {"x": 3.3, "y": [1, 2, 3]}],
    [],
    [{"x": 4.4, "y": {1, 2, 3, 4]}, {"x": 5.5, "y": [1, 2, 3, 4, 5]}]
])

the following slices out the y values, drops the first element from each inner list, and runs NumPy's np.square function on everything that is left:

output = np.square(array["y", ..., 1:])

The result is

[
    [[], [4], [4, 9]],
    [],
    [[4, 9, 16], [4, 9, 16, 25]]
]

The equivalent using only Python is

output = []
for sublist in array:
    tmp1 = []
    for record in sublist:
        tmp2 = []
        for number in record["y"][1:]:
            tmp2.append(np.square(number))
        tmp1.append(tmp2)
    output.append(tmp1)

Not only is the expression using Awkward Arrays more concise, using idioms familiar from NumPy, but it's much faster and uses less memory.

For a similar problem 10 million times larger than the one above (on a single-threaded 2.2 GHz processor),

  • the Awkward Array one-liner takes 4.6 seconds to run and uses 2.1 GB of memory,
  • the equivalent using Python lists and dicts takes 138 seconds to run and uses 22 GB of memory.

Speed and memory factors in the double digits are common because we're replacing Python's dynamically typed, pointer-chasing virtual machine with type-specialized, precompiled routines on contiguous data. (In other words, for the same reasons as NumPy.) Even higher speedups are possible when Awkward Array is paired with Numba.

Our presentation at SciPy 2020 provides a good introduction, showing how to use these arrays in a real analysis.

Installation

Awkward Array can be installed from PyPI using pip:

pip install awkward

You will likely get a precompiled binary (wheel), depending on your operating system and Python version. If not, pip attempts to compile from source (which requires a C++ compiler, make, and CMake).

Awkward Array is also available using conda, which always installs a binary:

conda install -c conda-forge awkward

If you have already added conda-forge as a channel, the -c conda-forge is unnecessary. Adding the channel is recommended because it ensures that all of your packages use compatible versions:

conda config --add channels conda-forge
conda update --all

Getting help

How-to tutorials

Python API reference

C++ API reference

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

awkward-1.2.3.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

awkward-1.2.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

awkward-1.2.3-cp39-cp39-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

awkward-1.2.3-cp39-cp39-win32.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86

awkward-1.2.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

awkward-1.2.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

awkward-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

awkward-1.2.3-cp38-cp38-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

awkward-1.2.3-cp38-cp38-win32.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86

awkward-1.2.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

awkward-1.2.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

awkward-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

awkward-1.2.3-cp37-cp37m-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

awkward-1.2.3-cp37-cp37m-win32.whl (9.5 MB view details)

Uploaded CPython 3.7m Windows x86

awkward-1.2.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

awkward-1.2.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

awkward-1.2.3-cp37-cp37m-macosx_10_9_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

awkward-1.2.3-cp36-cp36m-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

awkward-1.2.3-cp36-cp36m-win32.whl (9.5 MB view details)

Uploaded CPython 3.6m Windows x86

awkward-1.2.3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

awkward-1.2.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.5+ i686

awkward-1.2.3-cp35-cp35m-win_amd64.whl (13.1 MB view details)

Uploaded CPython 3.5m Windows x86-64

awkward-1.2.3-cp35-cp35m-win32.whl (9.5 MB view details)

Uploaded CPython 3.5m Windows x86

awkward-1.2.3-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.5+ i686

awkward-1.2.3-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ i686

awkward-1.2.3-cp27-cp27m-win_amd64.whl (13.1 MB view details)

Uploaded CPython 2.7m Windows x86-64

awkward-1.2.3-cp27-cp27m-win32.whl (9.6 MB view details)

Uploaded CPython 2.7m Windows x86

awkward-1.2.3-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (7.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

awkward-1.2.3-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl (7.7 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ i686

awkward-1.2.3-cp27-cp27m-macosx_10_9_x86_64.whl (7.7 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file awkward-1.2.3.tar.gz.

File metadata

  • Download URL: awkward-1.2.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3.tar.gz
Algorithm Hash digest
SHA256 7d727542927a926f488fa62d04e2c5728c72660f17f822e627f349285f295063
MD5 d66f10a93c8eb8f3fa50333dc752adba
BLAKE2b-256 4d7d6de83e56de46522c6caa1c5e617d91b9f126dbf36fd58ecc7b15cb26ea34

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98314046881df5620f2bc849255b053c4717c68be45405d4cace0069787c16d8
MD5 cb424f7da23b6a32623b27e3e34be259
BLAKE2b-256 9534e245cc8ac3d4f5703b6c852f5f4ed160885678b4a4e1e741bc57a100fdf8

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for awkward-1.2.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d700ac883e7253e31ebc5d96bdfc1e94961217d074139badf7726ed3352f5a09
MD5 9680b3974983093cb8bdc3902f6c043b
BLAKE2b-256 a5fcfc5817c6648dd0aff0406cd03d73668b349201f61ed32be0125a9d1be148

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: awkward-1.2.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for awkward-1.2.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d357f6209e34461a42a1fc2e68e60602b8c8eb74b55e6d83c7d4ed7d40f2d980
MD5 9c4c864e3eba83e35cdfc68aaf46d633
BLAKE2b-256 5533b1086fea5738d02c1de8c6dc85f9fbcd65df220c1f610c9b11bf6d6ad3dd

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 148f321c7c1bdc0b8c39c72c0580c1e74f2b5828300db9779a7176dfa493d1dc
MD5 f4773c4c2ef7ed7d01c3f8cb1e12bcc2
BLAKE2b-256 9d7f443a7217ed432f1d612e9b538aededa6cb526780169ac1afbfa7b7bd2d21

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36b1227706c4f1d5c11eb1ead7fa9c4f73b96b3eb9e5fa1651ea3cc41fbe1afd
MD5 f09b64d59ccb96aafb743af72c4c8f65
BLAKE2b-256 1147b167e4cf66b1d77ee4f4e8d0a8387715a73b8bed43d01f520738509f0954

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b74874a30011387a3c83d41353d7429359211c5f608d1375f64f7fa9386bd0d8
MD5 c8cf598207787c9753ddf76648404405
BLAKE2b-256 fa9fca6afa19db54c2a3643541169b58383867c3e0fa87dd5eeeb58db253c244

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.0

File hashes

Hashes for awkward-1.2.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a71be355f8a5cca0bec7abbd0fd1a677bdb88aec005ba48796ff6c082d7db39
MD5 3a437516d6a5f06b7b8c188ee0ec4cbe
BLAKE2b-256 cc7b23f3b0235b30c9ea921cf78d71b3898022658f35711d595225df02bc6a16

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for awkward-1.2.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6c47a1fd304770b509ef8c7ff964ad13432236bde846515089387c48d8c690a5
MD5 5b7c71b3039e97a997a3265f0c61f537
BLAKE2b-256 152c0d0b71e9eadf84f405e2de6c3b3395a6ab11cf86e9a71fa99f9cd0704552

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: awkward-1.2.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for awkward-1.2.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0665d81e4d2b065f041ca7d1ca68e3044483ac397c5cbc488a93b57a2257de90
MD5 784049bd0309486c74607083faf43788
BLAKE2b-256 b7baa4c1da44c579ddb31545b12dd00ae0868f9fd98564bde27e0a877184bd65

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 899f597ed7ae49c95c5fe4fa5e9d110182c46fa0b234f6b682328c29335a072a
MD5 c65fdae21b750906d7599b8509397a08
BLAKE2b-256 2d4d1a9cb653dca41820eef7349cf0ca1435b635f5ab5bdf4000335b503c75ce

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e3e9c44be4e1a538b6848fe235c61b708c4eb22a976c80f6759b5933b7900f69
MD5 b2156a4e6381892919333a3c21aac8ff
BLAKE2b-256 86a5cd9c849cf082c013e60c7a2e700cac6c83c02374ee4502d578e09ad57a19

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f7f6a5d6750ca6d258232000f2e6190f4fafe024e3e6529bf37133e85bccb43b
MD5 d4d142d0893d11e3d7545231cb2a12f8
BLAKE2b-256 ea5f2dbf28e06be5e61ecac78ba0688ce2aeeebd08a4d797a7dc140f0445e8be

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.8 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.6

File hashes

Hashes for awkward-1.2.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf5946962fd645829064b569391e160c31106eafc4c4ad5dc549e811974d051d
MD5 32ea0f977c345440214d1411a13272c1
BLAKE2b-256 77c2e5963b154c57e3f9ff2530e4903f5a288fde265e0762d1315e96c56ce467

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for awkward-1.2.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bdd182ae762f6841a5347d32df2b49abfafec2103a1e47c1cfc14dc72af6fe9b
MD5 667e734314e4631c8deb5b4eb836278e
BLAKE2b-256 c797af6f0795f1025b8e69ed7b36820c6631767f8be87a035cf3bca726e11e60

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: awkward-1.2.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for awkward-1.2.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ba60009a006e697536074426b010e7e2c8035afd3c882f55a57321adf87070ce
MD5 e594b5dc32f548e4fbbc0b6b8fe44e5d
BLAKE2b-256 acf71efb51c53e4e04919a52303dae74c116c7375fee0524be8823fbd929582d

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5577b6500c3d1a23e28b23227107bc33a9940b6fe9052dd5a775505b76708dfd
MD5 d8b9fc092c8bea86848030c1c3ec22d7
BLAKE2b-256 9f559de22fd5aed55d5b4dfca01dcfe9ee5a8f40adf99d0728454a95930895d3

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1b5194890cd40c2f3470dea7df7cdf90ec255464228e5084ceef80eae7fe86f
MD5 a06093298174107720b0c4b5e93b3442
BLAKE2b-256 add672a2980724145f1bc98c6c0f0b12708e7e1e415ab014531c05db43f84f0d

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9ca2d67d8926fd9a051e6f4206482165a64dd55764f93c9b74bcc795bc1b05fa
MD5 eae7ece6e10d60426273ed44462167b8
BLAKE2b-256 dbb2f1dc1eeef3cda5a976e3ba0994ddb8531e92f7656de3a47b1860eeda127d

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for awkward-1.2.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 117c0b08358fa3cafc5510d492705900229592a3d42610b31715c486793215e7
MD5 de1a56074c912e9e8c91ebdb6f8a4caf
BLAKE2b-256 ae411014d4bd4570e0ba872d30a9c5c14c757049ffcad2b36eb0f2e00432c82b

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.8

File hashes

Hashes for awkward-1.2.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a3f4306885aa7e88d41fa37945a16ea6bb2148b7fea412c8c4a30ef547bb9182
MD5 70cff656de9941025b82c8aed491dfac
BLAKE2b-256 3e60aa79affd0a9a27be8c57c57181a34a34965e0d9d1e2e2458bc7882517314

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: awkward-1.2.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.8

File hashes

Hashes for awkward-1.2.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b151c5a32cf1e5d200129447e6b1a0f58c78027ee6bcb671ddcfaca66fc59e07
MD5 b7460a3e29a59d650571eb84ff5a036a
BLAKE2b-256 6008e7a44fb5de06f9b7e91c2c6e54281fb7516bfa49d3585cfbadd7a557a9ed

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 554fceb3f057d93dc9ac9fafd3d7a7d259511558d365e41cb4f0ab5329a529c9
MD5 80d60566bf64c13b43b24d1e1b9b6bfe
BLAKE2b-256 7a9676e22cbcd2cce5f03977a70c297cc7a163c34bfbaf993b4efb51eb088e95

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b5e991747296ac5fca970c4dfec76b48aec8e3611f2a2b0781d4614b9ce09fae
MD5 2b9a48623baf7ad40ef41f19826603d8
BLAKE2b-256 716e383472ed5c8c3f0d769ec17085ce855500f33766f3df4eb706b04a5a859f

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4aa921c61d65616c565c08c64ed4b8e78cb11cef075659bc4ff5846ad1ea2160
MD5 8f24e27ab114983e74d8167d73ae2724
BLAKE2b-256 02061a9fb8a7c3e3f12ecdc764c30b6643e592b02853375812af6d3cef880860

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.5.4

File hashes

Hashes for awkward-1.2.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 d8e45b2fc10b22662d00067e4eb66578c605e16e882d6e5451ccf50a48d3b00e
MD5 dd6915af123bc87fc6f4d3205d0baa3e
BLAKE2b-256 5ccc4c6f61eb2a5c52cc53ac0a6b44582bbc4077e7166de155c4bed56c66bf1a

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp35-cp35m-win32.whl.

File metadata

  • Download URL: awkward-1.2.3-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/28.8.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.5.4

File hashes

Hashes for awkward-1.2.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 76811d92bd91a1ccc4b15608cee1850db2ae37e6dd16092d1a798f816f9548c2
MD5 ede0e68b84f0dc8ef0d513b060672bdb
BLAKE2b-256 ffcc93829e8ac5e5905d3f92185eacfa574d26a05af9e75fc845f0bca1045868

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp35-cp35m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 858cbc31bd94369e5da12cb1066bb00a77bbd27f212f55e987438e576188d7d5
MD5 2f63d13475406848898ba8fe50edb687
BLAKE2b-256 18d31462d99d7f0c5fdac49f6c0c8290b6f862de15bcda55dc4d0ed60f7542f0

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp35-cp35m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 173c030f40e3c7f612e939d03e15447e34208921bd17822e5c4c2bfc71471f9b
MD5 6f4cfb4e9e8e3e11290d00d7d12af752
BLAKE2b-256 f40756c326f732f8e61f6ee8dc8ae2ad8c075dd82493edc36fd9d6736d12628b

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 318ad57c01aaab9ce313b561287c415c6e59634a5909673b01c46c04df7332c0
MD5 ee074ddcb6da3ace9f2b12c8eee4eaea
BLAKE2b-256 f0dbf740282ca02538a6ea9d73babe1ff28c07f9383fd013dfce6d75e21d9426

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp27-cp27mu-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 4ebfa4b7fa45c1565acd6397b4ff71b89d3194d1440697983d3eed2de0656236
MD5 d19b50396ac0f570f02bb4982845929a
BLAKE2b-256 8bbd7d0dd668fc430c9b3112c5f3a7dcd8b59dcd53e2d4bebcf3f49aa58a8ae0

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 13.1 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/2.7.18

File hashes

Hashes for awkward-1.2.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 2f69c7bd692bb5b912ccfb82d3ac80b14365627e3423ff6452183da29a630172
MD5 939bb1b6dec306e3ae8930e56150fb23
BLAKE2b-256 a19449d0c29b368e79f2ed3b40335bd705b97e87c7d1ce3843b3d64efdcb1fed

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27m-win32.whl.

File metadata

  • Download URL: awkward-1.2.3-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/2.7.18

File hashes

Hashes for awkward-1.2.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 7ad5b445a759282015b5e422c101600326f20eab81bc66ce5f01b5b9eec8e88a
MD5 126ffa4ed301e5ab78f7a8427361e71e
BLAKE2b-256 bb2ff1d040da3bd819d6077a4eb765d41f627f2f735f283a63ab31d0954ca1a6

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for awkward-1.2.3-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4abf08c127a60ffd0b6622620d160daff58d27a247710b46be716f3108123cee
MD5 72fc80d0b59823bc56bc02848cbc3050
BLAKE2b-256 da08284ad04507f0fed2ba39db51ad8c85bfc6ef9c6839b34c7ff6a435edd367

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

  • Download URL: awkward-1.2.3-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.5+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for awkward-1.2.3-cp27-cp27m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 78791ace410b2c8c246e53b4954af5246bf762ed802ce5104d8f9ff675adba00
MD5 53014a00485b2cd7e09d05d776afafd0
BLAKE2b-256 b03a856d7bf91bc4a64cea09e111d0638db641b31187735aa0cd02977ab50185

See more details on using hashes here.

File details

Details for the file awkward-1.2.3-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: awkward-1.2.3-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 7.7 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/2.7.18

File hashes

Hashes for awkward-1.2.3-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82a43021b58cf2c570d2f58ae331c0d14a4e229360635a394c9be15a5849dc56
MD5 55ba13c8db86499a7b853775ff56997d
BLAKE2b-256 c579366a15ad88323385a995cf0a4e893ac16c87c545e4ba8b318b455847095b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page