Skip to main content

The AWS X-Ray SDK for Python (the SDK) enables Python developers to record and emit information from within their applications to the AWS X-Ray service.

Project description

Build Status

AWS X-Ray SDK for Python

Screenshot of the AWS X-Ray console

Installing

The AWS X-Ray SDK for Python is compatible with Python 2.7, 3.4, 3.5, and 3.6.

Install the SDK using the following command (the SDK's non-testing dependencies will be installed).

pip install aws-xray-sdk

To install the SDK's testing dependencies, use the following command.

pip install tox

Getting Help

Use the following community resources for getting help with the SDK. We use the GitHub issues for tracking bugs and feature requests.

Opening Issues

If you encounter a bug with the AWS X-Ray SDK for Python, we want to hear about it. Before opening a new issue, search the existing issues to see if others are also experiencing the issue. Include the version of the AWS X-Ray SDK for Python, Python language, and botocore/boto3 if applicable. In addition, include the repro case when appropriate.

The GitHub issues are intended for bug reports and feature requests. For help and questions about using the AWS SDK for Python, use the resources listed in the Getting Help section. Keeping the list of open issues lean helps us respond in a timely manner.

Documentation

The developer guide provides in-depth guidance about using the AWS X-Ray service. The API Reference provides guidance for using the SDK and module-level documentation.

Quick Start

Configuration

from aws_xray_sdk.core import xray_recorder

xray_recorder.configure(
    sampling=False,
    context_missing='LOG_ERROR',
    plugins=('EC2Plugin', 'ECSPlugin', 'ElasticBeanstalkPlugin'),
    daemon_address='127.0.0.1:3000',
    dynamic_naming='*mysite.com*'
)

Start a custom segment/subsegment

Using context managers for implicit exceptions recording:

from aws_xray_sdk.core import xray_recorder

with xray_recorder.in_segment('segment_name') as segment:
    # Add metadata or annotation here if necessary
    segment.put_metadata('key', dict, 'namespace')
    with xray_recorder.in_subsegment('subsegment_name') as subsegment:
        subsegment.put_annotation('key', 'value')
        # Do something here
    with xray_recorder.in_subsegment('subsegment2') as subsegment:
        subsegment.put_annotation('key2', 'value2')
        # Do something else 

async versions of context managers:

from aws_xray_sdk.core import xray_recorder

async with xray_recorder.in_segment_async('segment_name') as segment:
    # Add metadata or annotation here if necessary
    segment.put_metadata('key', dict, 'namespace')
    async with xray_recorder.in_subsegment_async('subsegment_name') as subsegment:
        subsegment.put_annotation('key', 'value')
        # Do something here
    async with xray_recorder.in_subsegment_async('subsegment2') as subsegment:
        subsegment.put_annotation('key2', 'value2')
        # Do something else 

Default begin/end functions:

from aws_xray_sdk.core import xray_recorder

# Start a segment
segment = xray_recorder.begin_segment('segment_name')
# Start a subsegment
subsegment = xray_recorder.begin_subsegment('subsegment_name')

# Add metadata or annotation here if necessary
segment.put_metadata('key', dict, 'namespace')
subsegment.put_annotation('key', 'value')
xray_recorder.end_subsegment()

# Close the segment
xray_recorder.end_segment()

Capture

As a decorator:

from aws_xray_sdk.core import xray_recorder

@xray_recorder.capture('subsegment_name')
def myfunc():
    # Do something here

myfunc()

or as a context manager:

from aws_xray_sdk.core import xray_recorder

with xray_recorder.capture('subsegment_name') as subsegment:
    # Do something here
    subsegment.put_annotation('mykey', val)
    # Do something more

Async capture as decorator:

from aws_xray_sdk.core import xray_recorder

@xray_recorder.capture_async('subsegment_name')
async def myfunc():
    # Do something here

async def main():
    await myfunc()

or as context manager:

from aws_xray_sdk.core import xray_recorder

async with xray_recorder.capture_async('subsegment_name') as subsegment:
    # Do something here
    subsegment.put_annotation('mykey', val)
    # Do something more

Adding annotations/metadata using recorder

from aws_xray_sdk.core import xray_recorder

# Start a segment if no segment exist
segment1 = xray_recorder.begin_segment('segment_name')

# This will add the key value pair to segment1 as it is active
xray_recorder.put_annotation('key', 'value')

# Start a subsegment so it becomes the active trace entity
subsegment1 = xray_recorder.begin_subsegment('subsegment_name')

# This will add the key value pair to subsegment1 as it is active
xray_recorder.put_metadata('key', 'value')

if xray_recorder.is_sampled():
    # some expensitve annotations/metadata generation code here
    val = compute_annotation_val()
    metadata = compute_metadata_body()
    xray_recorder.put_annotation('mykey', val)
    xray_recorder.put_metadata('mykey', metadata)

Trace AWS Lambda functions

from aws_xray_sdk.core import xray_recorder

def lambda_handler(event, context):
    # ... some code

    subsegment = xray_recorder.begin_subsegment('subsegment_name')
    # Code to record
    # Add metadata or annotation here, if necessary
    subsegment.put_metadata('key', dict, 'namespace')
    subsegment.put_annotation('key', 'value')

    xray_recorder.end_subsegment()

    # ... some other code

Trace ThreadPoolExecutor

import concurrent.futures

import requests

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch

patch(('requests',))

URLS = ['http://www.amazon.com/',
        'http://aws.amazon.com/',
        'http://example.com/',
        'http://www.bilibili.com/',
        'http://invalid-domain.com/']

def load_url(url, trace_entity):
    # Set the parent X-Ray entity for the worker thread.
    xray_recorder.set_trace_entity(trace_entity)
    # Subsegment captured from the following HTTP GET will be
    # a child of parent entity passed from the main thread.
    resp = requests.get(url)
    # prevent thread pollution
    xray_recorder.clear_trace_entities()
    return resp

# Get the current active segment or subsegment from the main thread.
current_entity = xray_recorder.get_trace_entity()
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
    # Pass the active entity from main thread to worker threads.
    future_to_url = {executor.submit(load_url, url, current_entity): url for url in URLS}
    for future in concurrent.futures.as_completed(future_to_url):
        url = future_to_url[future]
        try:
            data = future.result()
        except Exception:
            pass

Patch third-party libraries

from aws_xray_sdk.core import patch

libs_to_patch = ('boto3', 'mysql', 'requests')
patch(libs_to_patch)

Add Django middleware

In django settings.py, use the following.

INSTALLED_APPS = [
    # ... other apps
    'aws_xray_sdk.ext.django',
]

MIDDLEWARE = [
    'aws_xray_sdk.ext.django.middleware.XRayMiddleware',
    # ... other middlewares
]

Add Flask middleware

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware

app = Flask(__name__)

xray_recorder.configure(service='fallback_name', dynamic_naming='*mysite.com*')
XRayMiddleware(app, xray_recorder)

Working with aiohttp

Adding aiohttp middleware. Support aiohttp >= 2.3.

from aiohttp import web

from aws_xray_sdk.ext.aiohttp.middleware import middleware
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core.async_context import AsyncContext

xray_recorder.configure(service='fallback_name', context=AsyncContext())

app = web.Application(middlewares=[middleware])
app.router.add_get("/", handler)

web.run_app(app)

Tracing aiohttp client. Support aiohttp >=3.

from aws_xray_sdk.ext.aiohttp.client import aws_xray_trace_config

async def foo():
    trace_config = aws_xray_trace_config()
    async with ClientSession(loop=loop, trace_configs=[trace_config]) as session:
        async with session.get(url) as resp
            await resp.read()

Use SQLAlchemy ORM

The SQLAlchemy integration requires you to override the Session and Query Classes for SQL Alchemy

SQLAlchemy integration uses subsegments so you need to have a segment started before you make a query.

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.sqlalchemy.query import XRaySessionMaker

xray_recorder.begin_segment('SQLAlchemyTest')

Session = XRaySessionMaker(bind=engine)
session = Session()

xray_recorder.end_segment()
app = Flask(__name__)

xray_recorder.configure(service='fallback_name', dynamic_naming='*mysite.com*')
XRayMiddleware(app, xray_recorder)

Add Flask-SQLAlchemy

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
from aws_xray_sdk.ext.flask_sqlalchemy.query import XRayFlaskSqlAlchemy

app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///:memory:"

XRayMiddleware(app, xray_recorder)
db = XRayFlaskSqlAlchemy(app)

License

The AWS X-Ray SDK for Python is licensed under the Apache 2.0 License. See LICENSE and NOTICE.txt for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aws-xray-sdk-2.2.0.tar.gz (58.6 kB view details)

Uploaded Source

Built Distribution

aws_xray_sdk-2.2.0-py2.py3-none-any.whl (82.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file aws-xray-sdk-2.2.0.tar.gz.

File metadata

  • Download URL: aws-xray-sdk-2.2.0.tar.gz
  • Upload date:
  • Size: 58.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for aws-xray-sdk-2.2.0.tar.gz
Algorithm Hash digest
SHA256 fc5537268cc8041f74e14077c4b4b4cef0f3de25ecef793ace63cedf87fe4a2a
MD5 4479744aa226bc89f1c2f8bdd3a4f893
BLAKE2b-256 a080a1b81ef6a91a7d0a084d026d5b0e1dfe6d02637b0e248373c9179f0c2f4c

See more details on using hashes here.

File details

Details for the file aws_xray_sdk-2.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: aws_xray_sdk-2.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 82.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for aws_xray_sdk-2.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6d1474d83aa3149a59df7ca63fe032a4cbae9924ea82909068453538e98804c2
MD5 af47e8608267ba322569bd155a70b8c4
BLAKE2b-256 faafd7b3af4b7c829c056e8ceefefd247f399a981186b75bdb6200c29a199578

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page