Skip to main content

Microsoft Azure Metrics Advisor Client Library for Python

Project description

Azure Metrics Advisor client library for Python

Metrics Advisor is a scalable real-time time series monitoring, alerting, and root cause analysis platform. Use Metrics Advisor to:

  • Analyze multi-dimensional data from multiple data sources
  • Identify and correlate anomalies
  • Configure and fine-tune the anomaly detection model used on your data
  • Diagnose anomalies and help with root cause analysis

Source code | Package (Pypi) | API reference documentation | Product documentation

Getting started

Install the package

Install the Azure Metrics Advisor client library for Python with pip:

pip install azure-ai-metricsadvisor --pre

Prerequisites

Authenticate the client

You will need two keys to authenticate the client:

  1. The subscription key to your Metrics Advisor resource. You can find this in the Keys and Endpoint section of your resource in the Azure portal.
  2. The API key for your Metrics Advisor instance. You can find this in the web portal for Metrics Advisor, in API keys on the left navigation menu.

We can use the keys to create a new MetricsAdvisorClient or MetricsAdvisorAdministrationClient.

import os
from azure.ai.metricsadvisor import (
    MetricsAdvisorKeyCredential,
    MetricsAdvisorClient,
    MetricsAdvisorAdministrationClient,
)

service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")

client = MetricsAdvisorClient(service_endpoint,
                            MetricsAdvisorKeyCredential(subscription_key, api_key))

admin_client = MetricsAdvisorAdministrationClient(service_endpoint,
                            MetricsAdvisorKeyCredential(subscription_key, api_key))

Key concepts

MetricsAdvisorClient

MetricsAdvisorClient helps with:

  • listing incidents
  • listing root causes of incidents
  • retrieving original time series data and time series data enriched by the service.
  • listing alerts
  • adding feedback to tune your model

MetricsAdvisorAdministrationClient

MetricsAdvisorAdministrationClient allows you to

  • manage data feeds
  • configure anomaly detection configurations
  • configure anomaly alerting configurations
  • manage hooks

DataFeed

A DataFeed is what Metrics Advisor ingests from your data source, such as Cosmos DB or a SQL server. A data feed contains rows of:

  • timestamps
  • zero or more dimensions
  • one or more measures

Metric

A Metric is a quantifiable measure that is used to monitor and assess the status of a specific business process. It can be a combination of multiple time series values divided into dimensions. For example a web health metric might contain dimensions for user count and the en-us market.

AnomalyDetectionConfiguration

AnomalyDetectionConfiguration is required for every time series, and determines whether a point in the time series is an anomaly.

Anomaly & Incident

After a detection configuration is applied to metrics, Incidents are generated whenever any series within it has an Anomaly.

Alert

You can configure which anomalies should trigger an Alert. You can set multiple alerts with different settings. For example, you could create an alert for anomalies with lower business impact, and another for more important alerts.

Hook

Metrics Advisor lets you create and subscribe to real-time alerts. These alerts are sent over the internet, using a Hook.

Examples

Add a data feed from a sample or data source

Metrics Advisor supports connecting different types of data sources. Here is a sample to ingest data from SQL Server.

from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
        SQLServerDataFeed,
        DataFeedSchema,
        Metric,
        Dimension,
        DataFeedOptions,
        DataFeedRollupSettings,
        DataFeedMissingDataPointFillSettings
    )

service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
sql_server_connection_string = os.getenv("METRICS_ADVISOR_SQL_SERVER_CONNECTION_STRING")
query = os.getenv("METRICS_ADVISOR_SQL_SERVER_QUERY")

client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

data_feed = client.create_data_feed(
    name="My data feed",
    source=SQLServerDataFeed(
        connection_string=sql_server_connection_string,
        query=query,
    ),
    granularity="Daily",
    schema=DataFeedSchema(
        metrics=[
            Metric(name="cost", display_name="Cost"),
            Metric(name="revenue", display_name="Revenue")
        ],
        dimensions=[
            Dimension(name="category", display_name="Category"),
            Dimension(name="city", display_name="City")
        ],
        timestamp_column="Timestamp"
    ),
    ingestion_settings=datetime.datetime(2019, 10, 1),
    options=DataFeedOptions(
        data_feed_description="cost/revenue data feed",
        rollup_settings=DataFeedRollupSettings(
            rollup_type="AutoRollup",
            rollup_method="Sum",
            rollup_identification_value="__CUSTOM_SUM__"
        ),
        missing_data_point_fill_settings=DataFeedMissingDataPointFillSettings(
            fill_type="SmartFilling"
        ),
        access_mode="Private"
    )
)

return data_feed

Check ingestion status

After we start the data ingestion, we can check the ingestion status.

import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient

service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
data_feed_id = os.getenv("METRICS_ADVISOR_DATA_FEED_ID")

client = MetricsAdvisorAdministrationClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

ingestion_status = client.list_data_feed_ingestion_status(
    data_feed_id,
    datetime.datetime(2020, 9, 20),
    datetime.datetime(2020, 9, 25)
)
for status in ingestion_status:
    print("Timestamp: {}".format(status.timestamp))
    print("Status: {}".format(status.status))
    print("Message: {}\n".format(status.message))

Configure anomaly detection configuration

While a default detection configuration is automatically applied to each metric, we can tune the detection modes used on our data by creating a customized anomaly detection configuration.

from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
    ChangeThresholdCondition,
    HardThresholdCondition,
    SmartDetectionCondition,
    SuppressCondition,
    MetricDetectionCondition,
)

service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
metric_id = os.getenv("METRICS_ADVISOR_METRIC_ID")

client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

change_threshold_condition = ChangeThresholdCondition(
    anomaly_detector_direction="Both",
    change_percentage=20,
    shift_point=10,
    within_range=True,
    suppress_condition=SuppressCondition(
        min_number=5,
        min_ratio=2
    )
)
hard_threshold_condition = HardThresholdCondition(
    anomaly_detector_direction="Up",
    upper_bound=100,
    suppress_condition=SuppressCondition(
        min_number=2,
        min_ratio=2
    )
)
smart_detection_condition = SmartDetectionCondition(
    anomaly_detector_direction="Up",
    sensitivity=10,
    suppress_condition=SuppressCondition(
        min_number=2,
        min_ratio=2
    )
)

detection_config = client.create_metric_anomaly_detection_configuration(
    name="my_detection_config",
    metric_id=metric_id,
    description="anomaly detection config for metric",
    whole_series_detection_condition=MetricDetectionCondition(
        cross_conditions_operator="OR",
        change_threshold_condition=change_threshold_condition,
        hard_threshold_condition=hard_threshold_condition,
        smart_detection_condition=smart_detection_condition
    )
)

return detection_config

Configure alert configuration

Then let's configure in which conditions an alert needs to be triggered.

from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import (
    MetricAlertConfiguration,
    MetricAnomalyAlertScope,
    TopNGroupScope,
    MetricAnomalyAlertConditions,
    SeverityCondition,
    MetricBoundaryCondition,
    MetricAnomalyAlertSnoozeCondition
)
service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
anomaly_detection_configuration_id = os.getenv("METRICS_ADVISOR_DETECTION_CONFIGURATION_ID")
hook_id = os.getenv("METRICS_ADVISOR_HOOK_ID")

client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

alert_config = client.create_anomaly_alert_configuration(
    name="my alert config",
    description="alert config description",
    cross_metrics_operator="AND",
    metric_alert_configurations=[
        MetricAlertConfiguration(
            detection_configuration_id=anomaly_detection_configuration_id,
            alert_scope=MetricAnomalyAlertScope(
                scope_type="WholeSeries"
            ),
            alert_conditions=MetricAnomalyAlertConditions(
                severity_condition=SeverityCondition(
                    min_alert_severity="Low",
                    max_alert_severity="High"
                )
            )
        ),
        MetricAlertConfiguration(
            detection_configuration_id=anomaly_detection_configuration_id,
            alert_scope=MetricAnomalyAlertScope(
                scope_type="TopN",
                top_n_group_in_scope=TopNGroupScope(
                    top=10,
                    period=5,
                    min_top_count=5
                )
            ),
            alert_conditions=MetricAnomalyAlertConditions(
                metric_boundary_condition=MetricBoundaryCondition(
                    direction="Up",
                    upper=50
                )
            ),
            alert_snooze_condition=MetricAnomalyAlertSnoozeCondition(
                auto_snooze=2,
                snooze_scope="Metric",
                only_for_successive=True
            )
        ),
    ],
    hook_ids=[hook_id]
)

return alert_config

Query anomaly detection results

We can query the alerts and anomalies.

import datetime
from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorClient

service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")
alert_id = os.getenv("METRICS_ADVISOR_ALERT_ID")

client = MetricsAdvisorClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

results = client.list_alerts_for_alert_configuration(
    alert_configuration_id=alert_config_id,
    start_time=datetime.datetime(2020, 1, 1),
    end_time=datetime.datetime(2020, 9, 9),
    time_mode="AnomalyTime",
)
for result in results:
    print("Alert id: {}".format(result.id))
    print("Create on: {}".format(result.created_on))

results = client.list_anomalies_for_alert(
    alert_configuration_id=alert_config_id,
    alert_id=alert_id,
)
for result in results:
    print("Create on: {}".format(result.created_on))
    print("Severity: {}".format(result.severity))
    print("Status: {}".format(result.status))

Add hooks for receiving anomaly alerts

We can add some hooks so when an alert is triggered, we can get call back.

from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential, MetricsAdvisorAdministrationClient
from azure.ai.metricsadvisor.models import EmailHook

service_endpoint = os.getenv("METRICS_ADVISOR_ENDPOINT")
subscription_key = os.getenv("METRICS_ADVISOR_SUBSCRIPTION_KEY")
api_key = os.getenv("METRICS_ADVISOR_API_KEY")

client = MetricsAdvisorAdministrationClient(service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key))

hook = client.create_hook(
    name="email hook",
    hook=EmailHook(
        description="my email hook",
        emails_to_alert=["alertme@alertme.com"],
        external_link="https://adwiki.azurewebsites.net/articles/howto/alerts/create-hooks.html"
    )
)

Async APIs

This library includes a complete async API supported on Python 3.5+. To use it, you must first install an async transport, such as aiohttp. See azure-core documentation for more information.

from azure.ai.metricsadvisor import MetricsAdvisorKeyCredential
from azure.ai.metricsadvisor.aio import MetricsAdvisorClient, MetricsAdvisorAdministrationClient

client = MetricsAdvisorClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

admin_client = MetricsAdvisorAdministrationClient(
    service_endpoint,
    MetricsAdvisorKeyCredential(subscription_key, api_key)
)

Troubleshooting

General

The Azure Metrics Advisor clients will raise exceptions defined in Azure Core.

Logging

This library uses the standard logging library for logging.

Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO level.

Detailed DEBUG level logging, including request/response bodies and unredacted headers, can be enabled on the client or per-operation with the logging_enable keyword argument.

See full SDK logging documentation with examples here.

Next steps

More sample code

For more details see the samples README.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit cla.microsoft.com.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Release History

1.0.0b1 (2020-10-07)

First preview release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-ai-metricsadvisor-1.0.0b1.zip (199.1 kB view details)

Uploaded Source

Built Distribution

azure_ai_metricsadvisor-1.0.0b1-py2.py3-none-any.whl (121.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file azure-ai-metricsadvisor-1.0.0b1.zip.

File metadata

  • Download URL: azure-ai-metricsadvisor-1.0.0b1.zip
  • Upload date:
  • Size: 199.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.1 CPython/3.8.5

File hashes

Hashes for azure-ai-metricsadvisor-1.0.0b1.zip
Algorithm Hash digest
SHA256 cf90736e6a9bc72f65210684e6a973edb3634dbcd768a70af413137c4ecd3dad
MD5 46b96c66bf80863315ca7c94c41c1076
BLAKE2b-256 77c0e4e0408302e55be7fa7ef2eaf9a8efd3e6329b59b8fa30e6197103ca0f4e

See more details on using hashes here.

File details

Details for the file azure_ai_metricsadvisor-1.0.0b1-py2.py3-none-any.whl.

File metadata

  • Download URL: azure_ai_metricsadvisor-1.0.0b1-py2.py3-none-any.whl
  • Upload date:
  • Size: 121.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.1 CPython/3.8.5

File hashes

Hashes for azure_ai_metricsadvisor-1.0.0b1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 fea5318e73869476576e7d6fc83249e7d2c08152bd79bfb0dd7aeb8064339193
MD5 ca5da19b36779a1815352b156e8ccdac
BLAKE2b-256 7acc4b1abf04d322760eaff2bff5c64318803bb3f140e5c3ce35c8f25948d403

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page