Skip to main content

Azure Data Lake Store Filesystem Client Library for Python

Project description

azure-datalake-store

https://travis-ci.org/Azure/azure-data-lake-store-python.svg?branch=dev https://coveralls.io/repos/github/Azure/azure-data-lake-store-python/badge.svg?branch=master

azure-datalake-store is a file-system management system in python for the Azure Data-Lake Store.

To install from source instead of pip (for local testing and development):

> pip install -r dev_requirements.txt
> python setup.py develop

To run tests, you are required to set the following environment variables: azure_tenant_id, azure_username, azure_password, azure_data_lake_store_name

To play with the code, here is a starting point:

from azure.datalake.store import core, lib, multithread
token = lib.auth(tenant_id, username, password)
adl = core.AzureDLFileSystem(token, store_name=store_name)

# typical operations
adl.ls('')
adl.ls('tmp/', detail=True)
adl.cat('littlefile')
adl.head('gdelt20150827.csv')

# file-like object
with adl.open('gdelt20150827.csv', blocksize=2**20) as f:
    print(f.readline())
    print(f.readline())
    print(f.readline())
    # could have passed f to any function requiring a file object:
    # pandas.read_csv(f)

with adl.open('anewfile', 'wb') as f:
    # data is written on flush/close, or when buffer is bigger than
    # blocksize
    f.write(b'important data')

adl.du('anewfile')

# recursively download the whole directory tree with 5 threads and
# 16MB chunks
multithread.ADLDownloader(adl, "", 'my_temp_dir', 5, 2**24)

Command Line Sample Usage

To interact with the API at a higher-level, you can use the provided command-line interface in “samples/cli.py”. You will need to set the appropriate environment variables as described above to connect to the Azure Data Lake Store. Below is a simple sample, with more details beyond.

python samples\cli.py ls -l

Execute the program without arguments to access documentation.

To start the CLI in interactive mode, run “python samples/cli.py” and then type “help” to see all available commands (similiar to Unix utilities):

> python samples/cli.py
azure> help

Documented commands (type help <topic>):
========================================
cat    chmod  close  du      get   help  ls     mv   quit  rmdir  touch
chgrp  chown  df     exists  head  info  mkdir  put  rm    tail

azure>

While still in interactive mode, you can run “ls -l” to list the entries in the home directory (“help ls” will show the command’s usage details). If you’re not familiar with the Unix/Linux “ls” command, the columns represent 1) permissions, 2) file owner, 3) file group, 4) file size, 5-7) file’s modification time, and 8) file name.

> python samples/cli.py
azure> ls -l
drwxrwx--- 0123abcd 0123abcd         0 Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1048576 Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd        36 Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd         0 Aug 03 13:46 tmp
azure> ls -l --human-readable
drwxrwx--- 0123abcd 0123abcd   0B Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1M Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd  36B Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd   0B Aug 03 13:46 tmp
azure>

To download a remote file, run “get remote-file [local-file]”. The second argument, “local-file”, is optional. If not provided, the local file will be named after the remote file minus the directory path.

> python samples/cli.py
azure> ls -l
drwxrwx--- 0123abcd 0123abcd         0 Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1048576 Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd        36 Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd         0 Aug 03 13:46 tmp
azure> get xyz.csv
2016-08-04 18:57:48,603 - ADLFS - DEBUG - Creating empty file xyz.csv
2016-08-04 18:57:48,604 - ADLFS - DEBUG - Fetch: xyz.csv, 0-36
2016-08-04 18:57:49,726 - ADLFS - DEBUG - Downloaded to xyz.csv, byte offset 0
2016-08-04 18:57:49,734 - ADLFS - DEBUG - File downloaded (xyz.csv -> xyz.csv)
azure>

It is also possible to run in command-line mode, allowing any available command to be executed separately without remaining in the interpreter.

For example, listing the entries in the home directory:

> python samples/cli.py ls -l
drwxrwx--- 0123abcd 0123abcd         0 Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1048576 Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd        36 Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd         0 Aug 03 13:46 tmp
>

Also, downloading a remote file:

> python samples/cli.py get xyz.csv
2016-08-04 18:57:48,603 - ADLFS - DEBUG - Creating empty file xyz.csv
2016-08-04 18:57:48,604 - ADLFS - DEBUG - Fetch: xyz.csv, 0-36
2016-08-04 18:57:49,726 - ADLFS - DEBUG - Downloaded to xyz.csv, byte offset 0
2016-08-04 18:57:49,734 - ADLFS - DEBUG - File downloaded (xyz.csv -> xyz.csv)
>

Release History

0.0.2 (2017-01-30)

  • Addresses an issue with lib.auth() not properly defaulting to 2FA

  • Fixes an issue with Overwrite for ADLUploader sometimes not being honored.

  • Fixes an issue with empty files not properly being uploaded and resulting in a hang in progress tracking.

  • Addition of a samples directory showcasing examples of how to use the client and upload and download logic.

  • General cleanup of documentation and comments.

  • This is still based on API version 2016-11-01

0.0.1 (2016-11-21)

  • Initial preview release. Based on API version 2016-11-01.

  • Includes initial ADLS filesystem functionality and extended upload and download support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-datalake-store-0.0.2.tar.gz (34.7 kB view details)

Uploaded Source

File details

Details for the file azure-datalake-store-0.0.2.tar.gz.

File metadata

File hashes

Hashes for azure-datalake-store-0.0.2.tar.gz
Algorithm Hash digest
SHA256 ca0b63adae50aea5d00af8c397b9d0cf0c905fe0a43f86a3c0d2a50b8b4597ae
MD5 441fb28143272792a1aee21b503464cf
BLAKE2b-256 390a0600a6300b4fb974bdfd60ef64f6a7e18a4c688bd251c7f183b1365f99b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page