Skip to main content

Microsoft Azure Monitor Opentelemetry Exporter Client Library for Python

Project description

Microsoft OpenTelemetry exporter for Azure Monitor

Gitter chat

The exporter for Azure Monitor allows you to export data utilizing the OpenTelemetry SDK and send telemetry data to Azure Monitor for applications written in Python.

Source code | Package (PyPi) | API reference documentation | Product documentation | Samples | Changelog

Getting started

Install the package

Install the Microsoft OpenTelemetry exporter for Azure Monitor with pip:

pip install azure-monitor-opentelemetry-exporter --pre

Prerequisites

To use this package, you must have:

Instantiate the client

Interaction with Azure monitor exporter starts with an instance of the AzureMonitorTraceExporter class for distributed tracing, AzureMonitorLogExporter for logging and AzureMonitorMetricExporter for metrics. You will need a connection_string to instantiate the object. Please find the samples linked below for demonstration as to how to construct the exporter using a connection string.

Logging (experimental)

NOTE: The logging signal for the AzureMonitorLogExporter is currently in an EXPERIMENTAL state. Possible breaking changes may ensue in the future.

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

Metrics

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

Tracing

from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

You can also instantiate the exporter directly via the constructor. In this case, the connection string will be automatically populated from the APPLICATIONINSIGHTS_CONNECTION_STRING environment variable.

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter
exporter = AzureMonitorLogExporter()
from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter
exporter = AzureMonitorMetricExporter()
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter
exporter = AzureMonitorTraceExporter()

Key concepts

Some of the key concepts for the Azure monitor exporter include:

  • OpenTelemetry: OpenTelemetry is a set of libraries used to collect and export telemetry data (metrics, logs, and traces) for analysis in order to understand your software's performance and behavior.

  • Instrumentation: The ability to call the OpenTelemetry API directly by any application is facilitated by instrumentation. A library that enables OpenTelemetry observability for another library is called an instrumentation Library.

  • Log: Log refers to capturing of logging, exception and events.

  • LogRecord: Represents a log record emitted from a supported logging library.

  • LogEmitter: Converts a LogRecord into a readable LogData, and will be pushed through the SDK to be exported.

  • LogEmitter Provider: Provides a LogEmitter for the given instrumentation library.

  • LogProcessor: Interface to hook the log record emitting action.

  • LoggingHandler: A handler class which writes logging records in OpenTelemetry format from the standard Python logging library.

  • AzureMonitorLogExporter: This is the class that is initialized to send logging related telemetry to Azure Monitor.

  • Metric: Metric refers to recording raw measurements with predefined aggregation and sets of attributes for a period in time.

  • Measurement: Represents a data point recorded at a point in time.

  • Instrument: Instruments are used to report Measurements.

  • Meter: The Meter is responsible for creating Instruments.

  • Meter Provider: Provides a Meter for the given instrumentation library.

  • Metric Reader: An SDK implementation object that provides the common configurable aspects of the OpenTelemetry Metrics SDK such as collection, flushing and shutdown.

  • AzureMonitorMetricExporter: This is the class that is initialized to send metric related telemetry to Azure Monitor.

  • Trace: Trace refers to distributed tracing. A distributed trace is a set of events, triggered as a result of a single logical operation, consolidated across various components of an application. In particular, a Trace can be thought of as a directed acyclic graph (DAG) of Spans, where the edges between Spans are defined as parent/child relationship.

  • Span: Represents a single operation within a Trace. Can be nested to form a trace tree. Each trace contains a root span, which typically describes the entire operation and, optionally, one ore more sub-spans for its sub-operations.

  • Tracer: Responsible for creating Spans.

  • Tracer Provider: Provides a Tracer for use by the given instrumentation library.

  • Span Processor: A span processor allows hooks for SDK's Span start and end method invocations. Follow the link for more information.

  • AzureMonitorTraceExporter: This is the class that is initialized to send tracing related telemetry to Azure Monitor.

  • Sampling: Sampling is a mechanism to control the noise and overhead introduced by OpenTelemetry by reducing the number of samples of traces collected and sent to the backend.

  • ApplicationInsightsSampler: Application Insights specific sampler used for consistent sampling across Application Insights SDKs and OpenTelemetry-based SDKs sending data to Application Insights. This sampler MUST be used whenever AzureMonitorTraceExporter is used.

For more information about these resources, see What is Azure Monitor?.

Examples

Logging (experimental)

NOTE: The logging signal for the AzureMonitorLogExporter is currently in an EXPERIMENTAL state. Possible breaking changes may ensue in the future.

The following sections provide several code snippets covering some of the most common tasks, including:

Export Hello World Log

import os
import logging

from opentelemetry.sdk._logs import (
    LogEmitterProvider,
    LoggingHandler,
    set_log_emitter_provider,
)
from opentelemetry.sdk._logs.export import BatchLogProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

log_emitter_provider = LogEmitterProvider()
set_log_emitter_provider(log_emitter_provider)

exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

log_emitter_provider.add_log_processor(BatchLogProcessor(exporter))
handler = LoggingHandler()

# Attach LoggingHandler to root logger
logging.getLogger().addHandler(handler)
logging.getLogger().setLevel(logging.NOTSET)

logger = logging.getLogger(__name__)

logger.warning("Hello World!")

Export Correlated Log

import os
import logging

from opentelemetry import trace
from opentelemetry.sdk._logs import (
    LogEmitterProvider,
    LoggingHandler,
    set_log_emitter_provider,
)
from opentelemetry.sdk._logs.export import BatchLogProcessor
from opentelemetry.sdk.trace import TracerProvider

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
log_emitter_provider = LogEmitterProvider()
set_log_emitter_provider(log_emitter_provider)

exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

log_emitter_provider.add_log_processor(BatchLogProcessor(exporter))
handler = LoggingHandler()

# Attach LoggingHandler to root logger
logging.getLogger().addHandler(handler)
logging.getLogger().setLevel(logging.NOTSET)

logger = logging.getLogger(__name__)

logger.info("INFO: Outside of span")
with tracer.start_as_current_span("foo"):
    logger.warning("WARNING: Inside of span")
logger.error("ERROR: After span")

Export Custom Properties Log

import os
import logging

from opentelemetry.sdk._logs import (
    LogEmitterProvider,
    LoggingHandler,
    set_log_emitter_provider,
)
from opentelemetry.sdk._logs.export import BatchLogProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

log_emitter_provider = LogEmitterProvider()
set_log_emitter_provider(log_emitter_provider)

exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)

log_emitter_provider.add_log_processor(BatchLogProcessor(exporter))
handler = LoggingHandler()

# Attach LoggingHandler to root logger
logging.getLogger().addHandler(handler)
logging.getLogger().setLevel(logging.NOTSET)

logger = logging.getLogger(__name__)

# Custom properties
logger.debug("DEBUG: Debug with properties", extra={"debug": "true"})

Export Exceptions Log

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
An example showing how to export exception telemetry using the AzureMonitorLogExporter.
"""
import os
import logging

from opentelemetry.sdk._logs import (
    LogEmitterProvider,
    LoggingHandler,
    get_log_emitter_provider,
    set_log_emitter_provider,
)
from opentelemetry.sdk._logs.export import BatchLogProcessor

from azure.monitor.opentelemetry.exporter import AzureMonitorLogExporter

set_log_emitter_provider(LogEmitterProvider())
exporter = AzureMonitorLogExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
get_log_emitter_provider().add_log_processor(BatchLogProcessor(exporter))

# Attach LoggingHandler to namespaced logger
handler = LoggingHandler()
logger = logging.getLogger(__name__)
logger.addHandler(handler)
logger.setLevel(logging.NOTSET)

# The following code will generate two pieces of exception telemetry
# that are identical in nature
try:
    val = 1 / 0
    print(val)
except ZeroDivisionError:
    logger.exception("Error: Division by zero")

try:
    val = 1 / 0
    print(val)
except ZeroDivisionError:
    logger.error("Error: Division by zero", stack_info=True, exc_info=True)

Metrics

The following sections provide several code snippets covering some of the most common tasks, including:

Metric instrument usage

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
An example to show an application using all instruments in the OpenTelemetry SDK. Metrics created
and recorded using the sdk are tracked and telemetry is exported to application insights with the
AzureMonitorMetricsExporter.
"""
import os
from typing import Iterable

from opentelemetry import metrics
from opentelemetry.metrics import CallbackOptions, Observation
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter

exporter = AzureMonitorMetricExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))

# Create a namespaced meter
meter = metrics.get_meter_provider().get_meter("sample")

# Callback functions for observable instruments
def observable_counter_func(options: CallbackOptions) -> Iterable[Observation]:
    yield Observation(1, {})


def observable_up_down_counter_func(
    options: CallbackOptions,
) -> Iterable[Observation]:
    yield Observation(-10, {})


def observable_gauge_func(options: CallbackOptions) -> Iterable[Observation]:
    yield Observation(9, {})

# Counter
counter = meter.create_counter("counter")
counter.add(1)

# Async Counter
observable_counter = meter.create_observable_counter(
    "observable_counter", [observable_counter_func]
)

# UpDownCounter
up_down_counter = meter.create_up_down_counter("up_down_counter")
up_down_counter.add(1)
up_down_counter.add(-5)

# Async UpDownCounter
observable_up_down_counter = meter.create_observable_up_down_counter(
    "observable_up_down_counter", [observable_up_down_counter_func]
)

# Histogram
histogram = meter.create_histogram("histogram")
histogram.record(99.9)

# Async Gauge
gauge = meter.create_observable_gauge("gauge", [observable_gauge_func])

Metric custom views

import os

from opentelemetry import metrics
from opentelemetry.sdk.metrics import Counter, MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
from opentelemetry.sdk.metrics.view import View

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter

exporter = AzureMonitorMetricExporter.from_connection_string(
    os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
# Create a view matching the counter instrument `my.counter`
# and configure the new name `my.counter.total` for the result metrics stream
change_metric_name_view = View(
    instrument_type=Counter,
    instrument_name="my.counter",
    name="my.counter.total",
)

reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
provider = MeterProvider(
    metric_readers=[
        reader,
    ],
    views=[
        change_metric_name_view,
    ],
)
metrics.set_meter_provider(provider)

meter = metrics.get_meter_provider().get_meter("view-name-change")
my_counter = meter.create_counter("my.counter")
my_counter.add(100)

Metric record attributes

import os

from opentelemetry import metrics
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader

from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter

exporter = AzureMonitorMetricExporter.from_connection_string(
    os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
reader = PeriodicExportingMetricReader(exporter, export_interval_millis=5000)
metrics.set_meter_provider(MeterProvider(metric_readers=[reader]))

attribute_set1 = {
    "key1": "val1"
}
attribute_set2 = {
    "key2": "val2"
}
large_attribute_set = {}
for i in range(20):
    key = "key{}".format(i)
    val = "val{}".format(i)
    large_attribute_set[key] = val

meter = metrics.get_meter_provider().get_meter("sample")

# Counter
counter = meter.create_counter("attr1_counter")
counter.add(1, attribute_set1)

# Counter2
counter2 = meter.create_counter("attr2_counter")
counter2.add(10, attribute_set1)
counter2.add(30, attribute_set2)

# Counter3
counter3 = meter.create_counter("large_attr_counter")
counter3.add(100, attribute_set1)
counter3.add(200, large_attribute_set)

Tracing

The following sections provide several code snippets covering some of the most common tasks, including:

Export Hello World Trace

import os
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter

trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
# This is the exporter that sends data to Application Insights
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

with tracer.start_as_current_span("hello"):
    print("Hello, World!")

Instrumentation with requests library

OpenTelemetry also supports several instrumentations which allows to instrument with third party libraries.

This example shows how to instrument with the requests library.

  • Install the requests integration package using pip install opentelemetry-instrumentation-requests.
import os
import requests
from opentelemetry import trace
from opentelemetry.instrumentation.requests import RequestsInstrumentor
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import AzureMonitorTraceExporter

# This line causes your calls made with the requests library to be tracked.
RequestsInstrumentor().instrument()

trace.set_tracer_provider(TracerProvider())
tracer = trace.get_tracer(__name__)
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

# This request will be traced
response = requests.get(url="https://azure.microsoft.com/")

Enabling sampling

import os
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from azure.monitor.opentelemetry.exporter import (
    ApplicationInsightsSampler,
    AzureMonitorTraceExporter,
)

# Sampler expects a sample rate of between 0 and 1 inclusive
# A rate of 0.75 means approximately 75% of your telemetry will be sent
sampler = ApplicationInsightsSampler(0.75)
trace.set_tracer_provider(TracerProvider(sampler=sampler))
tracer = trace.get_tracer(__name__)
exporter = AzureMonitorTraceExporter(
    connection_string=os.environ["APPLICATIONINSIGHTS_CONNECTION_STRING"]
)
span_processor = BatchSpanProcessor(exporter)
trace.get_tracer_provider().add_span_processor(span_processor)

for i in range(100):
    # Approximately 25% of these spans should be sampled out
    with tracer.start_as_current_span("hello"):
        print("Hello, World!")

Troubleshooting

The exporter raises exceptions defined in Azure Core.

Next steps

More sample code

Please find further examples in the samples directory demonstrating common scenarios.

Additional documentation

For more extensive documentation on the Azure Monitor service, see the Azure Monitor documentation on docs.microsoft.com.

For detailed overview of OpenTelemetry, visit their overview page.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file azure-monitor-opentelemetry-exporter-1.0.0b8.zip.

File metadata

  • Download URL: azure-monitor-opentelemetry-exporter-1.0.0b8.zip
  • Upload date:
  • Size: 166.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.28.1 setuptools/58.1.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.9.14

File hashes

Hashes for azure-monitor-opentelemetry-exporter-1.0.0b8.zip
Algorithm Hash digest
SHA256 ec8d1a9ed488049e95455500e0e7bc2e9884f58225bbd6cc4bdd679d0b56b455
MD5 7f7e05fc1b4d514a32799f1af0cce02b
BLAKE2b-256 838f8ef839805feec9b607ef71d1d825bc8321fda8938059af0e6bf75d63500d

See more details on using hashes here.

File details

Details for the file azure_monitor_opentelemetry_exporter-1.0.0b8-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for azure_monitor_opentelemetry_exporter-1.0.0b8-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 03ab0a74db0552df10ef643b9fbb808112fbd57a9a9a2f01ae51c654c8f49c9e
MD5 1d61dee069a3e7f2863fbd92ba79c24f
BLAKE2b-256 31ccb7b6fac302b6a92a7de033fd432646deba70a5920e117d9ac04c203a47fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page