Skip to main content

Python client for Azure Quantum

Project description

Azure Quantum logo

Azure Quantum

Build Status PyPI version

Azure Quantum is Microsoft's cloud service for running Quantum Computing circuits or solving Optimization problems with our quantum partners and technologies. The azure-quantum package for Python provides functionality for interacting with Azure Quantum workspaces, including creating jobs, listing jobs, and retrieving job results. For more information, view the Azure Quantum Documentation.

This package supports submitting quantum circuits or problem definitions written with Python. To submit quantum programs written with Q#, Microsoft's Domain-specific language for Quantum Programming, view Submit Q# Jobs to Azure Quantum.

Installation

The package is released on PyPI and can be installed via pip:

pip install azure-quantum

To use azure-quantum for submitting quantum circuits expressed with Qiskit, install with optional dependencies:

pip install azure-quantum[qiskit]

To use azure-quantum for submitting quantum circuits expressed with Cirq, install with optional dependencies:

pip install azure-quantum[cirq]

Getting started and Quickstart guides

To work in Azure Quantum, you need an Azure subscription. If you don't have an Azure subscription, create a free account. Follow the Create an Azure Quantum workspace how-to guide to set up your Workspace and enable your preferred providers.

To get started, visit the following Quickstart guides:

General usage

To connect to your Azure Quantum Workspace, go to the Azure Portal, navigate to your Workspace and copy-paste the resource ID and location into the code snippet below.

from azure.quantum import Workspace

# Enter your Workspace details (resource ID and location) below
workspace = Workspace(
    resource_id="",
    location=""
)

List all targets

To list all targets that are available to your workspace, run

workspace.get_targets()

Submit a quantum circuit or optimization problem

First, define a quantum circuit or optimization problem, and create a job by submitting it to one of the available targets:

# Enter target name below
target = workspace.get_targets("")

# Submit quantum circuit or optimization problem
job = target.submit(problem)

# Wait for job to complete and fetch results
result = job.get_results()

Contributing

For details on contributing to this repository, see the contributing guide.

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Support

If you run into any problems or bugs using this package, please head over to the issues page and open a new issue, if it does not already exist.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-quantum-0.23.198514b1.tar.gz (93.5 kB view details)

Uploaded Source

Built Distribution

azure_quantum-0.23.198514b1-py3-none-any.whl (159.9 kB view details)

Uploaded Python 3

File details

Details for the file azure-quantum-0.23.198514b1.tar.gz.

File metadata

  • Download URL: azure-quantum-0.23.198514b1.tar.gz
  • Upload date:
  • Size: 93.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for azure-quantum-0.23.198514b1.tar.gz
Algorithm Hash digest
SHA256 803433b68a786c3684783077045219d76df6609cbc4d9cbb709bf8cca716af4e
MD5 b6ccdbeec20b07635a504556687a7936
BLAKE2b-256 e5e2c95318256745c4481bba2bedf9ce2083d4f97a3ecd07ebf1b923c1cb2e44

See more details on using hashes here.

File details

Details for the file azure_quantum-0.23.198514b1-py3-none-any.whl.

File metadata

  • Download URL: azure_quantum-0.23.198514b1-py3-none-any.whl
  • Upload date:
  • Size: 159.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for azure_quantum-0.23.198514b1-py3-none-any.whl
Algorithm Hash digest
SHA256 e61994a88a0ae37017ce27588cb842eeeb910e701c08f4232e14a117db137015
MD5 d200f0c6757d89f1f365b69059e906e1
BLAKE2b-256 53a6e49b9554d7cc596e3a55b808004ee2a47033ba407e08546ac024f054082b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page