Skip to main content

Python client for Azure Quantum

Project description

Azure Quantum logo

Azure Quantum

Build Status PyPI version

Azure Quantum is Microsoft's cloud service for running Quantum Computing circuits or solving Optimization problems with our quantum partners and technologies. The azure-quantum package for Python provides functionality for interacting with Azure Quantum workspaces, including creating jobs, listing jobs, and retrieving job results. For more information, view the Azure Quantum Documentation.

This package supports submitting quantum circuits or problem definitions written with Python. To submit quantum programs written with Q#, Microsoft's Domain-specific language for Quantum Programming, view Submit Q# Jobs to Azure Quantum.

Installation

The package is released on PyPI and can be installed via pip:

pip install azure-quantum

To use azure-quantum for submitting quantum circuits expressed with Qiskit, install with optional dependencies:

pip install azure-quantum[qiskit]

To use azure-quantum for submitting quantum circuits expressed with Cirq, install with optional dependencies:

pip install azure-quantum[cirq]

Getting started and Quickstart guides

To work in Azure Quantum, you need an Azure subscription. If you don't have an Azure subscription, create a free account. Follow the Create an Azure Quantum workspace how-to guide to set up your Workspace and enable your preferred providers.

To get started, visit the following Quickstart guides:

General usage

To connect to your Azure Quantum Workspace, go to the Azure Portal, navigate to your Workspace and copy-paste the resource ID and location into the code snippet below.

from azure.quantum import Workspace

# Enter your Workspace details (resource ID and location) below
workspace = Workspace(
    resource_id="",
    location=""
)

List all targets

To list all targets that are available to your workspace, run

workspace.get_targets()

Submit a quantum circuit or optimization problem

First, define a quantum circuit or optimization problem, and create a job by submitting it to one of the available targets:

# Enter target name below
target = workspace.get_targets("")

# Submit quantum circuit or optimization problem
job = target.submit(problem)

# Wait for job to complete and fetch results
result = job.get_results()

Contributing

For details on contributing to this repository, see the contributing guide.

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Support

If you run into any problems or bugs using this package, please head over to the issues page and open a new issue, if it does not already exist.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-quantum-0.26.232863b1.tar.gz (104.7 kB view details)

Uploaded Source

Built Distribution

azure_quantum-0.26.232863b1-py3-none-any.whl (172.2 kB view details)

Uploaded Python 3

File details

Details for the file azure-quantum-0.26.232863b1.tar.gz.

File metadata

  • Download URL: azure-quantum-0.26.232863b1.tar.gz
  • Upload date:
  • Size: 104.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for azure-quantum-0.26.232863b1.tar.gz
Algorithm Hash digest
SHA256 bc3204d632dad1bda30c5b3d68680e474c95ea67b2b5465f205643c9ecb20321
MD5 93d0a6a1214381f5f26ee997951497e8
BLAKE2b-256 a5d54908b93288a800894a02c0a82c470eaa50b436fc1f1bf725dacdb9a4eaa8

See more details on using hashes here.

File details

Details for the file azure_quantum-0.26.232863b1-py3-none-any.whl.

File metadata

File hashes

Hashes for azure_quantum-0.26.232863b1-py3-none-any.whl
Algorithm Hash digest
SHA256 e1147dae4a64ac404e471e8f2c036f43b78cdf34a7ab50c318f10ddebe1d1696
MD5 1fce22bc4f1b521b064939f986aac30b
BLAKE2b-256 2fc6a087bbb25b7f228083c8b6caee6250ecc0494c6b2354c1a83ca3f6cc3707

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page