Skip to main content

Azure Machine Learning Hardware Accelerated models

Project description

Easily create and train a model using various deep neural networks (DNNs) as a featurizer for deployment to Azure or a Data Box Edge device for ultra-low latency inference. These models are currently available:

  • ResNet 50

  • ResNet 152

  • DenseNet-121

  • VGG-16

  • SSD-VGG

Setup

Follow these instructions to install the Azure ML SDK on your local machine, create an Azure ML workspace, and set up your notebook environment, which is required for the next step.

Once you have set up your environment, install the Azure ML Accel Models SDK:

pip install azureml-accel-models

Note:* This package requires you to install tensorflow >= 1.6. This can be done using:

pip install azureml-accel-models[cpu]

If your machine supports GPU, then you can leverage the tensorflow-gpu functionality using:

pip install azureml-accel-models[gpu]

AzureML-Accel-Models

  • Create a featurizer using the Accelerated Models

  • Convert tensorflow model to ONNX format using AccelOnnxConverter

  • Create a container image with AccelContainerImage for deploying to either Azure or Data Box Edge

  • Use the sample PredictionClient for inference on a Accelerated Model Host or create your own GRPC client

Resources

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

azureml_accel_models-1.0.53-py3-none-any.whl (53.1 kB view details)

Uploaded Python 3

File details

Details for the file azureml_accel_models-1.0.53-py3-none-any.whl.

File metadata

  • Download URL: azureml_accel_models-1.0.53-py3-none-any.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.5.2

File hashes

Hashes for azureml_accel_models-1.0.53-py3-none-any.whl
Algorithm Hash digest
SHA256 683da7d263efb51bc83f2ac8e4787b4ce2dab10c532c4d23b864d1a84338db88
MD5 0ecf285ff9d1451e5f361d709b8a86fe
BLAKE2b-256 3fabcf87d2db04ff0760566e63be3f08cd729e48b542a5e7313cfd7c898d44ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page