Skip to main content

Azure ML Data Preparation RustLex

Project description

Azure Machine Learning Data Prep RsLex

Azure Machine Learning Data Prep RsLex is a Rust implementation of Data Prep's capabilities to load, transform, and write data for machine learning workflows. You can interact with RsLex via the Data Prep SDK, azureml-dataprep, by calling use_rust_execution(True) before using the SDK.

Install the SDK

To install Azure Machine Learning Data Prep RsLex, use the following command:

pip install --upgrade azureml-dataprep-rslex

NOTE: This package is not intended for direct installation or usage. azureml-dataprep depends on this package.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

azureml_dataprep_rslex-2.16.0-cp310-cp310-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

azureml_dataprep_rslex-2.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.0-cp310-cp310-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.16.0-cp39-cp39-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

azureml_dataprep_rslex-2.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.0-cp39-cp39-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.16.0-cp38-cp38-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

azureml_dataprep_rslex-2.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.0-cp38-cp38-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.16.0-cp37-cp37m-win_amd64.whl (14.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

azureml_dataprep_rslex-2.16.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.0-cp37-cp37m-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2fd278e2c16a487bf7a955960b9638d8e7ff11e0d177f9906f692ae6ee46f3e2
MD5 2973d9cc6bedfc7853c6a69ca6a6e3b8
BLAKE2b-256 de6d6a3d1fa947099cbcddd168c96ea269e2f2d855767b51990b8e3a79d72a5d

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c05f7ef00a96e12a946ffe1c43adf235be343ac7ea090c9b4811fa5c8ebf380f
MD5 ace82d165c6538c66485d75569f1a10e
BLAKE2b-256 52fb5b54bcc3147b9923e390840f80b49cbfb6e1ba461c7ba0eac99dc3ca6ef5

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4208fa9a4d944d6d0b2fdcdc02a33ffaebbc5e5c8a36f9402308116394de4a0e
MD5 ffc71b3ff4e0b105d05dc5f7eb5f5ce3
BLAKE2b-256 3b01b593bae7ef0fdb7cb58d64ab813ad1a90ce633966eccf37b98381c1641ae

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d10c2c63fd1fdf162948252920585e95a88cbd0504de986095b806159e2577e
MD5 a82d22903fa8a3789245c154f23f40e0
BLAKE2b-256 d55f79ff2c7cd0990ac8f9ea2914f0d18575863d322910db029b0c4f0ca97e5e

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 715bbfea37ca95ca1f9467875c824ac71e3e42055665d4f46ee2a695405761e8
MD5 2c5b2d7c729f3d91bfce225b31e1bd43
BLAKE2b-256 cb737ab4119264c10eec6c43a2b1c2703ea4d3b1c37cb66a3dccaab246bffc15

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 342fc66c17685498d0da7206cc2c023f93d73fa8c25b4f94b858dc99d5f79b6f
MD5 54dec99389c8ae8f39becb5a6af272a2
BLAKE2b-256 106bfaa3a09801e93667e9a3b832b19a42817ed1f4ac63a6b483785b01e82894

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 006653c763c8b0483571d50e78676122be5b3ea865ae04826bdf53ac6fff4552
MD5 5be462e403f1eb90ee5e479ca17a4666
BLAKE2b-256 fe83964a1012f0b3febcfc6525544d2edc998cbd6e551aad1ffef08aa1049bd9

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e12c15a6f1da8fc1cb988e027825f173dfd87b93a32f886f01c5065673309cd1
MD5 88f8bfd16fd50d36db9637a3324bae55
BLAKE2b-256 b427ea8bced2ed42f0cd10a8d3af0df987ccb4dfe3cea89acac2716248043de4

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb52541f04ef863e73696262c921847fdba889788b64f984259804303a322a8f
MD5 44858b739044c5071c80f6ae5eb6785d
BLAKE2b-256 9455b0b44bf0cdab94a56eae68aecb891e4103455525741fd24f971cd3590601

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 df51147514fa4994292ae55e6a36e51694b5f03b0eba5780b9ac61070a81667c
MD5 5374e348a4c80c776e9f7ab77b7410e1
BLAKE2b-256 5739c2b151fd7925ab96b35bd9633cbd69fbe19e0f8b30f9fff3eccf3f4f2bdd

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db1f663a8686757293c96b0a26300846b4b95f1b631873e676b6c9376485c94f
MD5 53e8eb4fa504de9bf07cd13aa710950f
BLAKE2b-256 2c2349773262ffb998f41449216a853dfed9eaf292cf68ddca4c5713607963e8

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89a435f49acfb3498e4ca88c43069c0408ef0e7361190b33417dc159a863968c
MD5 d55f6f03d97d3406d132c63ddb5c8686
BLAKE2b-256 a83aa82115000e8b6f243185a88183b15db098f28bbfb61f6cf589d96237ca64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page