Skip to main content

Azure ML Data Preparation RustLex

Project description

Azure Machine Learning Data Prep RsLex

Azure Machine Learning Data Prep RsLex is a Rust implementation of Data Prep's capabilities to load, transform, and write data for machine learning workflows. You can interact with RsLex via the Data Prep SDK, azureml-dataprep, by calling use_rust_execution(True) before using the SDK.

Install the SDK

To install Azure Machine Learning Data Prep RsLex, use the following command:

pip install --upgrade azureml-dataprep-rslex

NOTE: This package is not intended for direct installation or usage. azureml-dataprep depends on this package.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

azureml_dataprep_rslex-2.16.4-cp310-cp310-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

azureml_dataprep_rslex-2.16.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.4-cp310-cp310-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.16.4-cp39-cp39-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

azureml_dataprep_rslex-2.16.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.4-cp39-cp39-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.16.4-cp38-cp38-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

azureml_dataprep_rslex-2.16.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.4-cp38-cp38-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.16.4-cp37-cp37m-win_amd64.whl (15.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

azureml_dataprep_rslex-2.16.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.16.4-cp37-cp37m-macosx_10_9_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0863763b49cbdbf7f5d7efa2b7433ba9853e0157d2ec4ed44a8c9bf5205fae56
MD5 d84c3d1f7a511ab1dca2fb54c6c141dd
BLAKE2b-256 94a1b8f0594d9b75370d6388fa7d55ad08a1f6b9b016d9004fb42ab30e607ee8

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95674a4fcecf3bef626b9a19cacd8019c6fd1ba68b8f23ef07dc2c1d14f40566
MD5 c8a71237ca6cbd06b597e868ea896622
BLAKE2b-256 957b3373e7c39399fe585e4fdb0fcbf86dbbfd8b3571e0de127509d82715468c

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18f1fa807570cb0257c93a4f55e7428d41b6f38be473a9f60b80c9081e8d464b
MD5 8c01d8b5180845136e33cfd25cdc03eb
BLAKE2b-256 d2ea20fd6380e71fffddd79436124c3f8e1907da4db4e13b32ca1d8bde3fd0da

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 22f099b11f58a129a6a8cb9f85723d733531be279cf1ad5e708f4dbdad616331
MD5 0e3b31cc1e38776980d1ee39f8ec5cf7
BLAKE2b-256 d0bfb271fcee325a842ac90fe85da515e7cbdff97d4a41a780681b58b9086ec6

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7200b856564234e731b00f4ec5055be2be22d5be1c0cf4923c8e4bca5ea7efc
MD5 cb95f67f1554c9a1503fc613c6448fd4
BLAKE2b-256 506a49984d5f4e38e50b06241d465461c4dc5f815017ca9a5c7f217b9a6c6296

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a474db6c99802f7ec27ac029ab679e7bf472729b15a951e840a8d04c5b262e6a
MD5 83e6d874ab1ee2052a411b988f2f5e90
BLAKE2b-256 cff70dccf39ff6f708b748dd5f878095adca6d64188a65a6d598e4fb09a717a4

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 94a4dd4d1d2c65216a5b2fe6902faf93763d363f3768630fcc5e5ddb694e3cde
MD5 d80ed598ae00de6c414752d98f7b3c3a
BLAKE2b-256 9c5b98f642fbe5abb7258654e941eb63fad231473a4f65959241915bf9d2838d

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ac64ce36a79b50ea10d501c3316e26fd680e65b6bcea78b313f1e002ab25a5a
MD5 c19d5f965d430891343d3fef1805e19b
BLAKE2b-256 a741a71f25d2a31b522f7406617297fe4a91d62e535c32462a143a52d85bb340

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d30e362ade796873059bbe1d497603d7d9b2469e52de996b3d14ba2b4ac83c89
MD5 87f21c5ab0bf04bc610157f258b9da25
BLAKE2b-256 020f51de1349aa90703f34e0edec6c15c1ccf31fd6f2424a8e72db88cb4d6d5f

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4fc5911e01edb1b381ae6a7c2be079c49a5c7fbe2c4648d6e8d03819c9f8668b
MD5 5a427b50cdcdff4087c637fb0f6cffd0
BLAKE2b-256 61ce7bfb3e48834d5ce34003eef68126096dc858cf018e72bc57d9021a119822

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 394f2e2d829dd4f7bf53427767e04a7a5045c43059b66aa71e67f34094e0727a
MD5 a7ffa45eb92b2513cc0dfb437dea9d4c
BLAKE2b-256 e7bcabf7160c38c5140bff48e6de7f1dd1770d9c2b9eba04309d8a5301abdec0

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.16.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.16.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c773cafd7442c3c3dc2a075494b49a772d6977131351fb62f47f5579e2d7fef3
MD5 99d07387d45deb8b95e17d9f5ac84ca0
BLAKE2b-256 16418caa61f5dd265ed83a2f1012c74af04e141b39ca3f5e2ba3f50752920bdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page