Skip to main content

Azure ML Data Preparation RustLex

Project description

Azure Machine Learning Data Prep RsLex

Azure Machine Learning Data Prep RsLex is a Rust implementation of Data Prep's capabilities to load, transform, and write data for machine learning workflows. You can interact with RsLex via the Data Prep SDK, azureml-dataprep, by calling use_rust_execution(True) before using the SDK.

Install the SDK

To install Azure Machine Learning Data Prep RsLex, use the following command:

pip install --upgrade azureml-dataprep-rslex

NOTE: This package is not intended for direct installation or usage. azureml-dataprep depends on this package.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

azureml_dataprep_rslex-2.17.11-cp310-cp310-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

azureml_dataprep_rslex-2.17.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.11-cp310-cp310-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.11-cp39-cp39-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

azureml_dataprep_rslex-2.17.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.11-cp39-cp39-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.11-cp38-cp38-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

azureml_dataprep_rslex-2.17.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.11-cp38-cp38-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.11-cp37-cp37m-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

azureml_dataprep_rslex-2.17.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.11-cp37-cp37m-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 600f20b81098bb5faa7118fab0286b8907be66b33504745372fa99d5a66d1760
MD5 938e522b27a2941d6a1eba95d76633b3
BLAKE2b-256 b34788317b953ce2a041364aed725f29c4932a9cd2c2575d5119651bae80ba22

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e7a83b1a6d51d426666d8fbec6d89f28b16c8efa83ab2c50558d0355aa03154
MD5 2a8a73519e462fe4be21f18e2e29674e
BLAKE2b-256 511f83b6202e2f82833697f2ebf071137c0a0d01dccd41c46f14355cbae583cd

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cabec7a359838bfa5bb4490c56da794afe0b44bbe16090366f370b376f9f398
MD5 17da8e287cdd169f9cfec6d80f94ebf1
BLAKE2b-256 b00d105478436d2af529f920807047f75cd02a01be1047c6f36dc1765d3e7d04

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5baf9fa25675192fac760a09137760e39b46a764ab82959bf68025138ea9dd45
MD5 64bdf8fcd13ee185597271cadcea70a5
BLAKE2b-256 4d72f47b9b178e127d3e8fc94e7d6a03e7475f487fccdddbbe86152143136b03

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 307cf8fdb05130ddbb21bc9c17126dbc2cd61f3c1cf2b89b50adbbc3216d83c7
MD5 dc15029461de6bf5d24b1c6f62c84743
BLAKE2b-256 09fea06b0da24cfcbe7927676d9bdd26eb0e8e3aacbb6ea1a5c1ae8282c4aad6

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65300797324b710fe55b637207bd70f71b22e070c54587329867f787d56191b3
MD5 7aab50ded3429fee541456a0ce3e9bcf
BLAKE2b-256 7ef780a92408f420d604ab1d995696c7cf49e9da6d5cfada3580cdc62673f1c1

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c28cda070a4d1a078289f639968be080c11c111f7425820cd5ae938c34279183
MD5 9fcd8b0b6348e8c97204f80be86d590d
BLAKE2b-256 d5771d12860fb3949d9286b1c45143f215217ed48a2dcee9a6a93baae12856ea

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f12128e163cd6f00256bf46f7f0555aa7d84a4c3a928dfd53964bb1043d961b
MD5 7a7216b35bada341941afae4a86e1e07
BLAKE2b-256 d38af387f4cb8e3c9078dda0b9be0acb7921d7d41c930956ecebabd223557aa9

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5dbce38d043812e7a285189c22b8ed65422789fdcd7c5df8cca87ab9ad6bd1cd
MD5 1a015b89f30956208520c212058bb826
BLAKE2b-256 d3a716dd46afb23ba49eb0cb8303d507f74c0c41d78f128b70d59674617d9c9d

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b473a4990f7c0023815b7e3890b8cd6101340001b3994bd2ff67af41649081bf
MD5 4769392fca80de08080b56e2915983cf
BLAKE2b-256 0a4ff61c78ebebd756382acb82d64476eedba476172cd6ef47a1c70530c665e4

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ae9d40c4c34389fab90b9d786d8d710e59be6eeba4be7204f5f298a5fa7942c
MD5 b6664c091da93e0e0b31d7b9603c7713
BLAKE2b-256 2d4bb1bdac09608a500f15aa2b202a9c4fc735cb60d7ed5654b577490868b3e2

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1179c3b6ef67b3ea2f0cb26108ba13f09e0feef6cfcf96ba87b8a9a9f2622174
MD5 8c15af35a84586389755174552c0900d
BLAKE2b-256 9f0873588b5b3a61adae01b51583e5064e10d38e8748b737db5e8b44d451472c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page