Skip to main content

Azure ML Data Preparation RustLex

Project description

Azure Machine Learning Data Prep RsLex

Azure Machine Learning Data Prep RsLex is a Rust implementation of Data Prep's capabilities to load, transform, and write data for machine learning workflows. You can interact with RsLex via the Data Prep SDK, azureml-dataprep, by calling use_rust_execution(True) before using the SDK.

Install the SDK

To install Azure Machine Learning Data Prep RsLex, use the following command:

pip install --upgrade azureml-dataprep-rslex

NOTE: This package is not intended for direct installation or usage. azureml-dataprep depends on this package.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

azureml_dataprep_rslex-2.17.12-cp310-cp310-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

azureml_dataprep_rslex-2.17.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.12-cp310-cp310-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.12-cp39-cp39-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

azureml_dataprep_rslex-2.17.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.12-cp39-cp39-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.12-cp38-cp38-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

azureml_dataprep_rslex-2.17.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.12-cp38-cp38-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.12-cp37-cp37m-win_amd64.whl (16.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

azureml_dataprep_rslex-2.17.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.12-cp37-cp37m-macosx_10_9_x86_64.whl (17.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 be3cd70200969acaa76abd9789da11dbbd43d639f6e794d58e9de8afb8859a0a
MD5 30d2ff97ea2d1143e62c45d9a3ded5ff
BLAKE2b-256 e47a8d58e282de0fe9939e9081fcd923fa00034693853ee2c25463327e751185

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adb59b7d19651fb4300f8ea23e0b18afba37a51faf53b8d725c3aefa722aac08
MD5 aa9c94debfacab2d59fe2276c36e379d
BLAKE2b-256 3807b6f9878d659364436aa6c4fa92f414172c0d1215bf97fac82a2fec0357b5

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa8be892c1ec3fba6e9ec82f285f600f7097c9fba15554f83d5c531060c2c453
MD5 92fd161100d709794cdce6625d43dde9
BLAKE2b-256 6e2a42003ffa76a3e1eb77c95c11145b9a05a3c3b9662502a33282eefd783b5b

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea54ff496fcedac419fa136c361bf4f3065593f0e9ca1f13102afb93090dd518
MD5 edf1a94113bff42ee40de1854a5efaa1
BLAKE2b-256 169df37222bec151b721d862b32db7e50681f965ecd85765e63f2114a2350855

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 503552a7af54fc5dc884fd1906036c3fa3e6188feb6b3d94a310b7ae0f9742fb
MD5 fb642256fd415e55b51328e55cfd5db7
BLAKE2b-256 f7850bac0b81fd22d9e59043cdda8e250536d7ffb469f261a17ef6572a6f8936

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbd5ac6493a54cb8af380f8df7d9f7c0b6eb8a6b82de35feda33e342c5103e1e
MD5 d411c32a88ddc469296994643bc9ced5
BLAKE2b-256 51e098c7a422487dfc6dfd72cbac3095aeba8c4ebf2228acc7ea84fb3bc8a18d

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1da6bb6c8e034f52261f23a8cadcf17fabdd64af2ca84c04cce36828de1be8c3
MD5 baaefa492084a969cbc4f02e1fbe4211
BLAKE2b-256 f923d73061ed9447da00b1a94ee2565b696eed657b3b308808b7a91579a2f808

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69b99c9a6ee603bc187c25a26bc2a147fd3247e21c9db55ecad16091d3dd40ab
MD5 8218671d8515c9e8bd25d2166d6e87d5
BLAKE2b-256 1cc6911770adfaee8b49700dc45740a2e164c98b618529bcf516b432dd3271e1

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d70f549f8681a445821a8d6cfe5efc89d9f0194f38742313d11065cb0e9984d
MD5 d8feb4261abb6b4b28048e5a2c26a7c9
BLAKE2b-256 79091ca40c1493cf036175093744d35e66abfc66e6ffba886e21996d13a435ee

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bbadc68e2c331c4b1bd5ffb43e7089c84ea1178f1c9365551404b0c4dc235ae5
MD5 b3a915465aa4c0b8d0b07803db8e7a89
BLAKE2b-256 e440a5e6cb1f0b7d28b7cb0a1c3bfe0e55f35a05741cb6811e275acd32633fd2

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e10ea655d35ea604ef22c5522aa1f02ae6d48268b0395fad0bce6c127630bc37
MD5 3c0a1671b59d188f42627914a2c508e8
BLAKE2b-256 42151e6749d72463b85f3a305aa87375a12b8cd09a80f27221436200e5425789

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43ea2edc50834bb5622fa2dbb55e5b2a7bfdb0514a196ad5ae6de9160d32d958
MD5 439e00a38e37436430fb083208dd3287
BLAKE2b-256 7f17de5e4d82c524f3fea3844ccffc9246fde38a3baef6e1409d40ad62116297

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page