Skip to main content

Azure ML Data Preparation RustLex

Project description

Azure Machine Learning Data Prep RsLex

Azure Machine Learning Data Prep RsLex is a Rust implementation of Data Prep's capabilities to load, transform, and write data for machine learning workflows. You can interact with RsLex via the Data Prep SDK, azureml-dataprep, by calling use_rust_execution(True) before using the SDK.

Install the SDK

To install Azure Machine Learning Data Prep RsLex, use the following command:

pip install --upgrade azureml-dataprep-rslex

NOTE: This package is not intended for direct installation or usage. azureml-dataprep depends on this package.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

azureml_dataprep_rslex-2.17.8-cp310-cp310-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

azureml_dataprep_rslex-2.17.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.8-cp310-cp310-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.8-cp39-cp39-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

azureml_dataprep_rslex-2.17.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.8-cp39-cp39-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.8-cp38-cp38-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

azureml_dataprep_rslex-2.17.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.8-cp38-cp38-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

azureml_dataprep_rslex-2.17.8-cp37-cp37m-win_amd64.whl (16.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

azureml_dataprep_rslex-2.17.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

azureml_dataprep_rslex-2.17.8-cp37-cp37m-macosx_10_9_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 07b089a89a39410a404a551e9592706262cc0b97d29e4b2bb26a4b9826fcec48
MD5 75cd0e2549c12a8b34aef3b5c0c29869
BLAKE2b-256 7af26a80b162d70b95b225719f3f7c421c4c2f0e0f0e057e46352052163a31de

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67cdc930c80ccb3a78bf95ce9ba02acfee009217cf4461856f6cd96d96345ea7
MD5 9d4d67aacbd696f16c5b7ee89b4bdb67
BLAKE2b-256 351ba6484bff045551af688e4546b7d2f7734fecc22d936e5da281d4cd6d9ef0

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b74cc6e31593078ef6ee703c53bf0c89610f8530fa73e8fb6cccd605f5b31c87
MD5 9aaa68313c281e1ed9a951a803f212a3
BLAKE2b-256 19141879d234e792a1b1f51deac2018f9fd37915ccaf305a23f3a868d021c469

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 47fb37ca281bdf950a4a4bd40c0a4a8d9674310584296e0ae21b07b77a716e5d
MD5 057b33d6bb567410eea9093acb92b847
BLAKE2b-256 382dc82907382cf15d39b6a1c4b24203891ac25aa2190950becf0e6aef88d73f

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db2f458378ba53e3e4ec03f92003f3773975fddce107318ae340e8f137f9f5ce
MD5 896b55251bc7baed63626b4e8bd01643
BLAKE2b-256 d1e6d356430b995ceb15e507211a04a7b2c06330a0572628628d2d99d51759ec

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d880d02109bacd5fe1c89e9282d8635c1cea4881bed7283bba712afcab2ba7ea
MD5 df3046f63bef4c2bf8727c440270b760
BLAKE2b-256 8b650bf1c1614667ab72aa264b2ed61cd96f0b76bb68f104cd71c9fdd0bd0b31

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b82a7dbd5236c4e8979671f3a82014951c5fc0b933c45589fe2cd6d2e301cf3a
MD5 5ffeb290af2fcf997fce44b93d1cd3c5
BLAKE2b-256 b16a1214db802094e7d46aca1a411098dd3ef7baca181aac664f53038a941631

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65028ee5ef32d7ed804bd23b5d6222184e17a4dee82ea12f34cfd01a57f581af
MD5 484ae5052b4a96a4f0693cbc33ba868a
BLAKE2b-256 2fdf19f0eeafb048e88754128253fd58094ccbab97776f986424c1fb29bf382b

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e0c32e0786799dce18ef63e17a7becfe9e73ac14cc8d4ad894a6053c368b979
MD5 3557cd5a7818717d6f7ed882dbd7c3c7
BLAKE2b-256 1cfef5cf715a2a4311170ece350956349e6fac235447c78709c6943bcde46603

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e50bc25a492498213d892f635bde7abe7d265bad3155ec9bdaccb828a61bac73
MD5 343150ad9f1db4242298a8e242ece938
BLAKE2b-256 660fbf4e08c1f06211a394aac94883b7d1640e3e5b12ba6de1322d3fbaa1be9c

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f952e494c7ab61515c1f6b8148bc993c6f3d868f6dad7f17eb4588d693fabaf
MD5 d2e1bc3d657e76328f13ebc73c81cc67
BLAKE2b-256 3836606288d891773e3f7be35d4965c22ab6412052ec3ced7a16d0121844d5a4

See more details on using hashes here.

File details

Details for the file azureml_dataprep_rslex-2.17.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for azureml_dataprep_rslex-2.17.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fd5243172c092c8d2f7c35ff99832d7b27f88ee3d1937e7715f3b30fc85a16ae
MD5 deb8b21d47a613f3e4af8765f2be6c89
BLAKE2b-256 cbd72d847a1e8897eb6c0295d818cc5908e317100ca3c0e76d1b57a0be437b5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page